
Replacing the CDB with Subversion and Ant

C. Loomis
Laboratoire de l’Accélérator Linéaire (LAL), Orsay, France

April 25, 2005

Abstract

This document explains the benefits of using subversion and ant as
an alternative to the standard Quattor Configuration Database (CDB).
It lists the software necessary to do this, how to configure that software,
and how to manage a site’s configuration with this system.

1

Contents

1 Overview 3

2 External Software Needed 4

3 How SCDB Works 4

4 Setup 5
4.1 Server Configuration . 5
4.2 Client Configuration . 6

5 Targets 7

6 Structure of the Module 7

7 Typical Tasks 8
7.1 Change a template for all machines 8
7.2 Change a template for only one cluster 8
7.3 Add a machine to a cluster . 9
7.4 Add a cluster . 9
7.5 Update a configuration component 9
7.6 Reverting to Previous Versions 9

8 Using Eclipse 9

9 Feedback and Support 10

2

1 Overview

The standard Quattor configuration database (CDB) is based on CVS with a
custom front-end handling the interactions between CVS and the user. As an
alternative (referred to below as SCDB), subversion can be used as the version
control system with an ant build script defining standard configuration tasks.

This alternative has some advantages over the standard CDB implementa-
tion:

• Benefits directly from the advantages of subversion over CVS. (E.g. truly
atomic commits, logically consistent branching and tagging, management
of directories, integration with Apache web server, etc.)

• Exposes fully the code management features of subversion, making merg-
ing, conflict management, and tagging all evident for those accostumed to
code management systems.

• Allows all changes to be verified and tested locally before committing and
deploying those changes.

• Allows templates to be grouped into separate directories to facilitate man-
agement of those templates and to make it easier to identify changes in
externally-supplied templates (e.g. Quattor templates, LCG templates,
etc.).

• Allows site-specific changes to be isolated from standard templates to allow
those changes to be easily identified.

• Allows multiple clusters to share the bulk of the templates but still make
cluster-specific changes to some of the templates.

• Integrates well with existing, graphical code development systems, notably
eclipse.

• Allows an alternative XML format to be used which integrates well with
XML databases and the XPath/XQuery standards.

However, there are some disadvantages as well:

• It is not supported by the Quattor developers (but is supported).

• Requires subversion server and client software which is not yet a standard
part of many operating system distributions.

• Requires java 1.5 which is not available on all platforms.

LAL has a desire to unify the management system for it’s grid and non-grid
resources. Because of this we need the capability to manage several “clusters”
simulataneously. Because of this need and a pre-existing subversion infrastruc-
ture at the laboratory, LAL developed and uses this alternative configuration
database.

3

2 External Software Needed

The SCDB alternative requires various external software packages. The needed
packages are:

subversion A subversion server is needed to hold and control the configuration
information. A subversion client is needed on the machine(s) from which
the configuration will be managed. The source as well as links to binary
packages are available from the subversion web site1.

apache The subversion server runs within an Apache2 server. The code is
available from the Apache Foundation2 but is also included in most recent
operating system distributions. Subversion requires an Apache2-series re-
lease; older version 1 releases will not work.

java The ant framework is written in java and consequently the quattor ant
tasks are as well. A java virtual machine can be obtained from Sun3 for
Windows, Linux, and Solaris systems. For other operating systems, you
need to contact your vendor. The quattor tasks require java 1.5.

panc To allow the local building and testing of machine profiles, the Quat-
tor pan compiler (panc) is required. This is written in standard C++
with minimal dependencies. However, it has only been tested on unix-like
systems.

ant The various configuration management tasks are controlled via an ant build
script. Ant version 1.6.2 or later is required. It can be obtained from the
Apache Foundation4.

eclipse Eclipse is optional, but provides a very good front-end for graphical
management of a site’s configuration. See the eclipse web site5 to download
the version for your platform.

Ant does not need to be installed separately as it is included in the example
distribution you will check out to seed your subversion module.

3 How SCDB Works

The configuration information for a site is managed via a standard subversion
module which has a particular structure and a custom post-commit hook script.
The module acts as a database for the site’s configuration and additionally keeps
a complete history of the changes.

Once setup, the configuration is checked-out from the server, modified lo-
cally, tested locally, and then committed back to the server. The checkout and
commits are done with standard subversion commands. The modifications are
done with your favorite editor. The compilation and testing of the configuration
are done via pre-defined ant tasks.

1http://subversion.tigris.org/
2http://www.apache.org/
3http://java.sun.com/
4http://ant.apache.org
5http://eclipse.org/

4

http://subversion.tigris.org/
http://www.apache.org/
http://java.sun.com/
http://ant.apache.org
http://eclipse.org/

Committed changes are visible to other administrators, but are not automat-
ically deployed to the clients. This is to allow large changes to be tested and
committed incrementally. Frequent commits avoid large and difficult conflict
resolution.

To deploy changes to clients, the current trunk must be copied (tagged)
to the deploy branch of the module. There is an ant task to perform this
tag and to ensure that the tag has the correct name. The tag’s name is a
formatted version of the current date and time. This serves as record of all
configurations deployed on a site. Separate named tags can be made directly
with the subversion commands, if desired.

Tags with the proper date/time format to the deploy subdirectory trigger
the subversion post-commit script to deploy the new configuration to the client
machines.

The post-commit hook script does the following:

1. Creates or updates a workspace on the subversion server with the revision
justed tagged.

2. Does a complete build of the configuration profiles.

3. For successful builds, it copies the generated profiles to the a web location
accessible to the clients and notifies all of the clients that new profiles are
available.

4. Sends an email to a predetermined list logging the action and telling
whether the build was successful or not.

The script currently does this in the foreground, so the client which did the ant
deploy command waits until the above procedure is finished.

Once the clients are notified, they pull the new machine profile and affect
any necessary changes on the client. This is done entirely with the standard
Quattor software.

4 Setup

4.1 Server Configuration

Subversion provides an excellent book6 which describes both the use and ad-
ministration of a subversion server. Please refer to the subversion book for
instructions on setting up a server. Once the server is running, create a module
using svnadmin to hold your site’s configuration. Both the server and module
are completely standard.

Download the prototype module from the QWG server. With a web browser
go to the URL:

http://svn.lal.in2p3.fr/WebSVN/QWG/SCDB/?rev=0&sc=0

and click on the “tarball” link opposite to the “SCDB” to create and download
a tarball of the directory. Unpack the tarball into a temporary area.

Check out your newly created module.
6http://svnbook.red-bean.com/

5

http://svnbook.red-bean.com/

svn co <your SVN module URL> scdb

Copy the unpacked contents of the tarball (below the root of the tarball) into
your checked out working copy of the repository. From the top-level of your
working copy do the following:

svn add *
svn commit -m "Initial structure"

This provides you with the build file (build.xml), some of the required external
software, and the particular structure used by the build script. You must also
set the ignore property on the trunk directory:

cat > ignore.txt <<EOF
build
deploy
EOF
svn propset svn:ignore trunk -F ignore.txt
rm ignore.txt
svn commit -m "Ignore generated files"

This will ignore generated files. If this is not done, the deployment will usu-
ally fail because the build script checks for local modifications before deploying
changes.

In the external/scripts subdirectory there is an example subversion post-
commit hook script. You should modify this script to correspond to the values
for your site. The important parameters are the notification email list and the
directory on the server to use as a cache.

You should ensure that the additional, external software is installed on your
client: a subversion client and the pan compiler.

You can modify any of the parameters of the build script by putting a
build.properties file at the top-level of the cache on the server. For example,
to modify the location of the pan compiler on the server and the deployment
directory for the machine profiles, put the following into the build.properties
file:

pan.compiler=/usr/local/pan/panc
deploy.xml=/var/www/html/profiles

Another property you might want to modify is “pan.xml.format” which by de-
fault is set to “xmldb”. This format is appropriate for using the machine profiles
in an XML database, but you might want the default panc format for some rea-
son. To change the format set this value to “pan”.

4.2 Client Configuration

The client configuration consists mainly of installing the necessary external soft-
ware. The packages necessary are a subversion client, the pan compiler, and java.
Once these are available, check out your module. The files you copied into your
module contain an example machine profile and some example templates. This
should allow you to test the targets described in the next section.

NOTE: This has only been tested on a linux client. In principle, any client
can be used where the external dependencies are satisfied. If you have success
with another client, please send an email with the details.

6

5 Targets

Except for making and committing changes to the templates, other common
tasks are encoded as ant targets. The primary targets are:

all This is the default target and rebuilds the machine profiles if any changes
have been made.

all.force This will rebuild the machine profiles from scratch. This just invokes
“clean” followed by “all”.

check.syntax Check the syntax of all of the pan templates. The profiles will
not be recreated if there are any templates with syntax errors.

clean Remove the generated files in the “build” subdirectory.

clean.all This removes all generated files including those in the deployment
area.

compile.profiles Compile the machine profiles. This is the target invoked by
“all”.

deploy This tags the current version in trunk by copying that version to the
“deploy” subdirectory. This triggers the server to rebuild the machine
profiles on the server and to notify the clients of the change. This target
will not succeed if there are any uncommitted local modifications.

update.rep.templates Parses the repository templates for the servers’ URLs,
contacts the server, and updates the list of available packages. This mod-
ifies the local templates only; changes must be committed manually.

There are a few internal or rarely-used targets which are normally hidden. Type:

ant -verbose -projecthelp

to get a full list of all defined targets.

6 Structure of the Module

The subversion module has the following subdirectories:

cfg Contains all of the configuration templates.

cfg/shared Templates intended to be shared by all machines.

cfg/clusters Templates specific to individual clusters.

external Contains all of the external software (mainly ant tasks) required by
the build script. There is also the required version of ant installed here.

src Contains prototype hook scripts for the server.

When running the build scripts, the following directories are created:

build Various intermediate files created in the build process. Also contains the
local copy final generated templates.

7

deploy A deployment directory created when the internal deploy.and.notify
task is run. Normally this is only run on the server, but can be run locally
for tests. Note: the clients are notified by this task, but unless there are
actually new deployed profiles, it will have no effect.

7 Typical Tasks

This section describes some of the typical tasks and the how to accomplish them
with SCDB.

7.1 Change a template for all machines

The templates under the cfg/shared directory are shared by all of the machines
in all of the clusters. If you want a change to affect all of the machines, make
the change to the templates in this area. Steps are:

1. Edit and save the template to change.

2. Run ant to rebuild the local files.

3. Debug and verify the changes to the local machine profiles.

4. Commit changes with svn commit.

5. Deploy changes to machines with ant deploy.

The deploy task requires that the local build is successful; this is to minimize the
chance of bad changes being deployed to running machines. The deploy target
only needs to be called when you want to deploy changes; you can accumulate
changes in the repository until you are ready to deploy them all.

7.2 Change a template for only one cluster

The templates within the cluster subdirectory contain the templates specific
to a particular cluster. This includes the top-level object profiles, but also any
templates specific for that cluster or any templates modified for that cluster.

To modify the template for only one cluster:

1. Copy the template to modify from the shared area to the clusters/NAME
area where NAME is the name of your cluster. You do not need to keep
the structure under the shared area, but it is good practice to do so.

2. Run ant to rebuild the local files.

3. Debug and verify the changes to the local machine profiles.

4. Commit changes with svn commit.

5. Deploy changes to machines with ant deploy.

Except for the location of the template this is the same procedure as for global
modifications.

This override mechanism is an excellent way to isolate changes and is useful
even if your site has only one cluster. It can be used, for example, to keep

8

local modifications to the LCG templates separate from the standard templates
distributed with a release. This makes it easier to identify and reapply changes
when a new release appears.

7.3 Add a machine to a cluster

To add a machine to a cluster simply put the machine profile in the appropriate
“clusters/NAME/profiles” directory where “NAME” is the name of your cluster.
Rebuild the local profiles, then commit and deploy the change as appropriate.

7.4 Add a cluster

To add a new cluster, just create a new subdirectory below the “clusters” direc-
tory. Add a “profiles” subdirectory and populate it with the machine profiles.
Copy and modify any templates specific to this cluster. Rebuild the local pro-
files, then commit and deploy the changes as appropriate.

7.5 Update a configuration component

Configuration components are often updated to extend the functionality or to
correct bugs. To deploy a new component to the clients do the following:

1. Build the package containing the new configuration component.

2. Copy this package into your software repository.

3. Make the package locally and copy the component templates into the
shared/components subdirectory (assuming this is a global change).

4. Remake the repository templates with the ant update.rep.templates
command.

5. Rebuild and verify the changes locally.

6. Commit and deploy the changes.

Updating non-configuration component packages is similar.

7.6 Reverting to Previous Versions

To revert to previous tagged versions or to undo changes, simply use the stan-
dard subversion commands for merging changes into the trunk copy. After the
changes, just build, commit, and deploy as usual.

8 Using Eclipse

To be completed.

9

9 Feedback and Support

Using subversion and ant as alternative for the Quattor configuration database
(CDB) has many benefits and is being effectively used to manage LAL’s com-
puting intrastructure.

This alternative, however, is not officially supported by the Quattor devel-
opers nor by the Quattor Working Group. It is supported by the developer
(charles.loomis@cern.ch) who will respond to questions, bug reports, and re-
quests for enhancement. Your constructive feedback is welcome.

10

	Overview
	External Software Needed
	How SCDB Works
	Setup
	Server Configuration
	Client Configuration

	Targets
	Structure of the Module
	Typical Tasks
	Change a template for all machines
	Change a template for only one cluster
	Add a machine to a cluster
	Add a cluster
	Update a configuration component
	Reverting to Previous Versions

	Using Eclipse
	Feedback and Support

