// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: F03DetectorConstruction.cc,v 1.13 2009/11/05 01:10:06 gum Exp $ // GEANT4 tag $Name: geant4-09-04-beta-01 $ // // #include "F03DetectorConstruction.hh" #include "F03DetectorMessenger.hh" #include "F03CalorimeterSD.hh" #include "F03FieldSetup.hh" #include "G4Material.hh" #include "G4Tubs.hh" #include "G4LogicalVolume.hh" #include "G4PVPlacement.hh" #include "G4UniformMagField.hh" #include "G4FieldManager.hh" #include "G4TransportationManager.hh" #include "G4SDManager.hh" #include "G4RunManager.hh" #include "G4GeometryManager.hh" #include "G4PhysicalVolumeStore.hh" #include "G4LogicalVolumeStore.hh" #include "G4SolidStore.hh" #include "G4ios.hh" ///////////////////////////////////////////////////////////////////////////// // // F03DetectorConstruction::F03DetectorConstruction() : solidWorld(0), logicWorld(0), physiWorld(0), solidAbsorber(0),logicAbsorber(0), physiAbsorber(0), magField(0), fEmFieldSetup(0), calorimeterSD(0), AbsorberMaterial(0), fRadiatorMat(0), worldchanged(false), WorldMaterial(0) { // default parameter values of the calorimeter WorldSizeZ = 44000.*mm; WorldSizeR = 22000.*mm; AbsorberThickness = 1.0*mm; AbsorberRadius = 20000.*mm; zAbsorber = 21990.0*mm ; fRadThickness = 100*mm ; fGasGap = 100*mm ; fFoilNumber = 1 ; fDetGap = 1.0*mm ; fStartR = 40*cm ; fStartZ = 10.0*mm ; // create commands for interactive definition of the calorimeter detectorMessenger = new F03DetectorMessenger(this); DefineMaterials(); fEmFieldSetup = new F03FieldSetup() ; } ////////////////////////////////////////////////////////////////////////// // // F03DetectorConstruction::~F03DetectorConstruction() { delete detectorMessenger; if (fEmFieldSetup) delete fEmFieldSetup ; } ////////////////////////////////////////////////////////////////////////// // // G4VPhysicalVolume* F03DetectorConstruction::Construct() { return ConstructCalorimeter(); } ////////////////////////////////////////////////////////////////////////////// // // void F03DetectorConstruction::DefineMaterials() { // This function illustrates the possible ways to define materials G4String name, symbol ; // a=mass of a mole; G4double a, z, density ; // z=mean number of protons; G4int nel ; G4int ncomponents; G4double fractionmass, pressure, temperature; // // define Elements // a = 1.01*g/mole; G4Element* elH = new G4Element(name="Hydrogen",symbol="H" , z= 1., a); a = 12.01*g/mole; G4Element* elC = new G4Element(name="Carbon", symbol="C", z=6., a); a = 14.01*g/mole; G4Element* elN = new G4Element(name="Nitrogen",symbol="N" , z= 7., a); a = 16.00*g/mole; G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , z= 8., a); a = 39.948*g/mole; G4Element* elAr = new G4Element(name="Argon", symbol="Ar", z=18., a); // // define simple materials // // Mylar density = 1.39*g/cm3; G4Material* Mylar = new G4Material(name="Mylar", density, nel=3); Mylar->AddElement(elO,2); Mylar->AddElement(elC,5); Mylar->AddElement(elH,4); // Polypropelene G4Material* CH2 = new G4Material ("Polypropelene" , 0.91*g/cm3, 2); CH2->AddElement(elH,2); CH2->AddElement(elC,1); // Krypton as detector gas, STP density = 3.700*mg/cm3 ; a = 83.80*g/mole ; G4Material* Kr = new G4Material(name="Kr",z=36., a, density ); // Dry air (average composition) density = 1.7836*mg/cm3 ; // STP G4Material* Argon = new G4Material(name="Argon" , density, ncomponents=1); Argon->AddElement(elAr, 1); density = 1.25053*mg/cm3 ; // STP G4Material* Nitrogen = new G4Material(name="N2" , density, ncomponents=1); Nitrogen->AddElement(elN, 2); density = 1.4289*mg/cm3 ; // STP G4Material* Oxygen = new G4Material(name="O2" , density, ncomponents=1); Oxygen->AddElement(elO, 2); density = 1.2928*mg/cm3 ; // STP density *= 1.0e-8 ; // pumped vacuum temperature = STP_Temperature; pressure = 1.0e-8*STP_Pressure; G4Material* Air = new G4Material(name="Air" , density, ncomponents=3, kStateGas,temperature,pressure); Air->AddMaterial( Nitrogen, fractionmass = 0.7557 ) ; Air->AddMaterial( Oxygen, fractionmass = 0.2315 ) ; Air->AddMaterial( Argon, fractionmass = 0.0128 ) ; // Xenon as detector gas, STP density = 5.858*mg/cm3 ; a = 131.29*g/mole ; G4Material* Xe = new G4Material(name="Xenon",z=54., a, density ); // Carbon dioxide, STP density = 1.842*mg/cm3; G4Material* CarbonDioxide = new G4Material(name="CO2", density, nel=2); CarbonDioxide->AddElement(elC,1); CarbonDioxide->AddElement(elO,2); // 80% Xe + 20% CO2, STP density = 5.0818*mg/cm3 ; G4Material* Xe20CO2 = new G4Material(name="Xe20CO2" , density, ncomponents=2); Xe20CO2->AddMaterial( Xe, fractionmass = 0.922 ) ; Xe20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.078 ) ; // 80% Kr + 20% CO2, STP density = 3.601*mg/cm3 ; G4Material* Kr20CO2 = new G4Material(name="Kr20CO2" , density, ncomponents=2); Kr20CO2->AddMaterial( Kr, fractionmass = 0.89 ) ; Kr20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.11 ) ; G4cout << *(G4Material::GetMaterialTable()) << G4endl; //default materials of the calorimeter and TR radiator fRadiatorMat = Air ; // CH2 ; // Mylar ; AbsorberMaterial = Air ; // Kr20CO2 ; // XeCO2CF4 ; WorldMaterial = Air ; } ///////////////////////////////////////////////////////////////////////// // // G4VPhysicalVolume* F03DetectorConstruction::ConstructCalorimeter() { G4int j ; G4double zModule, zRadiator; // complete the Calor parameters definition and Print ComputeCalorParameters(); PrintCalorParameters(); // Cleanup old geometry if (physiWorld) { G4GeometryManager::GetInstance()->OpenGeometry(); G4PhysicalVolumeStore::GetInstance()->Clean(); G4LogicalVolumeStore::GetInstance()->Clean(); G4SolidStore::GetInstance()->Clean(); } solidWorld = new G4Tubs("World", // its name 0.,WorldSizeR,WorldSizeZ/2.,0.,twopi); // its size logicWorld = new G4LogicalVolume(solidWorld, // its solid WorldMaterial, // its material "World"); // its name physiWorld = new G4PVPlacement(0, // no rotation G4ThreeVector(), // at (0,0,0) "World", // its name logicWorld, // its logical volume 0, // its mother volume false, // no boolean operation 0); // copy number // TR radiator envelope G4double radThick = fFoilNumber*(fRadThickness + fGasGap) + fDetGap ; G4double zRad = zAbsorber - 20*cm - 0.5*radThick ; G4cout<<"zRad = "<SetFieldManager( fEmFieldSetup->GetLocalFieldManager(), allLocal ) ; physiRadiator = new G4PVPlacement(0, G4ThreeVector(0,0,zRad), "Radiator", logicRadiator, physiWorld, false, 0 ); fSolidRadSlice = new G4Tubs("RadSlice",0.0, AbsorberRadius,0.5*fRadThickness,0.0,twopi ) ; fLogicRadSlice = new G4LogicalVolume(fSolidRadSlice,fRadiatorMat, "RadSlice",0,0,0); zModule = zRad + 0.5*radThick/1.02 ; G4cout<<"zModule = "< 0.) { solidAbsorber = new G4Tubs("Absorber", 1.0*mm, AbsorberRadius, AbsorberThickness/2., 0.0,twopi); logicAbsorber = new G4LogicalVolume(solidAbsorber, AbsorberMaterial, "Absorber"); physiAbsorber = new G4PVPlacement(0, G4ThreeVector(0.,0.,zAbsorber), "Absorber", logicAbsorber, physiWorld, false, 0); } // Sensitive Detectors: Absorber G4SDManager* SDman = G4SDManager::GetSDMpointer(); if(!calorimeterSD) { calorimeterSD = new F03CalorimeterSD("CalorSD",this); SDman->AddNewDetector( calorimeterSD ); } if (logicAbsorber) logicAbsorber->SetSensitiveDetector(calorimeterSD); return physiWorld; } //////////////////////////////////////////////////////////////////////////// // // void F03DetectorConstruction::PrintCalorParameters() { G4cout << "\n The WORLD is made of " << WorldSizeZ/mm << "mm of " << WorldMaterial->GetName() ; G4cout << ", the transverse size (R) of the world is " << WorldSizeR/mm << " mm. " << G4endl; G4cout << " The ABSORBER is made of " << AbsorberThickness/mm << "mm of " << AbsorberMaterial->GetName() ; G4cout << ", the transverse size (R) is " << AbsorberRadius/mm << " mm. " << G4endl; G4cout << " Z position of the (middle of the) absorber " << zAbsorber/mm << " mm." << G4endl; G4cout << G4endl; } /////////////////////////////////////////////////////////////////////////// // // void F03DetectorConstruction::SetAbsorberMaterial(G4String materialChoice) { // get the pointer to the material table const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); // search the material by its name G4Material* pttoMaterial; for (size_t J=0 ; Jsize() ; J++) { pttoMaterial = (*theMaterialTable)[J]; if(pttoMaterial->GetName() == materialChoice) { AbsorberMaterial = pttoMaterial; logicAbsorber->SetMaterial(pttoMaterial); } } } //////////////////////////////////////////////////////////////////////////// // // void F03DetectorConstruction::SetWorldMaterial(G4String materialChoice) { // get the pointer to the material table const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); // search the material by its name G4Material* pttoMaterial; for (size_t J=0 ; Jsize() ; J++) { pttoMaterial = (*theMaterialTable)[J]; if(pttoMaterial->GetName() == materialChoice) { WorldMaterial = pttoMaterial; logicWorld->SetMaterial(pttoMaterial); } } } /////////////////////////////////////////////////////////////////////////// // // void F03DetectorConstruction::SetAbsorberThickness(G4double val) { // change Absorber thickness and recompute the calorimeter parameters AbsorberThickness = val; ComputeCalorParameters(); } ///////////////////////////////////////////////////////////////////////////// // // void F03DetectorConstruction::SetAbsorberRadius(G4double val) { // change the transverse size and recompute the calorimeter parameters AbsorberRadius = val; ComputeCalorParameters(); } //////////////////////////////////////////////////////////////////////////// // // void F03DetectorConstruction::SetWorldSizeZ(G4double val) { worldchanged=true; WorldSizeZ = val; ComputeCalorParameters(); } /////////////////////////////////////////////////////////////////////////// // // void F03DetectorConstruction::SetWorldSizeR(G4double val) { worldchanged=true; WorldSizeR = val; ComputeCalorParameters(); } ////////////////////////////////////////////////////////////////////////////// // // void F03DetectorConstruction::SetAbsorberZpos(G4double val) { zAbsorber = val; ComputeCalorParameters(); } /////////////////////////////////////////////////////////////////////////////// // // void F03DetectorConstruction::UpdateGeometry() { G4RunManager::GetRunManager()->DefineWorldVolume(ConstructCalorimeter()); } // // ////////////////////////////////////////////////////////////////////////////