// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4PSSphereSurfaceCurrent.cc,v 1.6 2010/07/23 04:35:38 taso Exp $ // GEANT4 tag $Name: $ // // G4PSSphereSurfaceCurrent #include "G4PSSphereSurfaceCurrent.hh" #include "G4StepStatus.hh" #include "G4Track.hh" #include "G4VSolid.hh" #include "G4VPhysicalVolume.hh" #include "G4VPVParameterisation.hh" #include "G4UnitsTable.hh" #include "G4GeometryTolerance.hh" //////////////////////////////////////////////////////////////////////////////// // (Description) // This is a primitive scorer class for scoring only Surface Current. // Current version assumes only for G4Sphere shape. // // Surface is defined at the inside of sphere. // Direction -Rmin +Rmax // 0 IN || OUT ->|<- | // 1 IN ->| | // 2 OUT |<- | // // Created: 2005-11-14 Tsukasa ASO, Akinori Kimura. // 2010-07-22 Introduce Unit specification. // /////////////////////////////////////////////////////////////////////////////// G4PSSphereSurfaceCurrent::G4PSSphereSurfaceCurrent(G4String name, G4int direction, G4int depth) :G4VPrimitiveScorer(name,depth),HCID(-1),fDirection(direction), weighted(true),divideByArea(true) { DefineUnitAndCategory(); SetUnit("percm2"); } G4PSSphereSurfaceCurrent::G4PSSphereSurfaceCurrent(G4String name, G4int direction, const G4String& unit, G4int depth) :G4VPrimitiveScorer(name,depth),HCID(-1),fDirection(direction), weighted(true),divideByArea(true) { DefineUnitAndCategory(); SetUnit(unit); } G4PSSphereSurfaceCurrent::~G4PSSphereSurfaceCurrent() {;} G4bool G4PSSphereSurfaceCurrent::ProcessHits(G4Step* aStep,G4TouchableHistory*) { G4StepPoint* preStep = aStep->GetPreStepPoint(); G4VPhysicalVolume* physVol = preStep->GetPhysicalVolume(); G4VPVParameterisation* physParam = physVol->GetParameterisation(); G4VSolid * solid = 0; if(physParam) { // for parameterized volume G4int idx = ((G4TouchableHistory*)(aStep->GetPreStepPoint()->GetTouchable())) ->GetReplicaNumber(indexDepth); solid = physParam->ComputeSolid(idx, physVol); solid->ComputeDimensions(physParam,idx,physVol); } else { // for ordinary volume solid = physVol->GetLogicalVolume()->GetSolid(); } G4Sphere* sphereSolid = (G4Sphere*)(solid); G4int dirFlag =IsSelectedSurface(aStep,sphereSolid); if ( dirFlag > 0 ) { if ( fDirection == fCurrent_InOut || fDirection == dirFlag ){ G4double radi = sphereSolid->GetInsideRadius(); G4double dph = sphereSolid->GetDeltaPhiAngle()/radian; G4double stth = sphereSolid->GetStartThetaAngle()/radian; G4double enth = stth+sphereSolid->GetDeltaThetaAngle()/radian; G4double current = 1.0; if ( weighted) current = preStep->GetWeight(); // Current (Particle Weight) if ( divideByArea ){ G4double square = radi*radi*dph*( -std::cos(enth) + std::cos(stth) ); current = current/square; // Current with angle. } G4int index = GetIndex(aStep); EvtMap->add(index,current); } } return TRUE; } G4int G4PSSphereSurfaceCurrent::IsSelectedSurface(G4Step* aStep, G4Sphere* sphereSolid){ G4TouchableHandle theTouchable = aStep->GetPreStepPoint()->GetTouchableHandle(); G4double kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); if (aStep->GetPreStepPoint()->GetStepStatus() == fGeomBoundary ){ // Entering Geometry G4ThreeVector stppos1= aStep->GetPreStepPoint()->GetPosition(); G4ThreeVector localpos1 = theTouchable->GetHistory()->GetTopTransform().TransformPoint(stppos1); G4double localR2 = localpos1.x()*localpos1.x() +localpos1.y()*localpos1.y() +localpos1.z()*localpos1.z(); //G4double InsideRadius2 = // sphereSolid->GetInsideRadius()*sphereSolid->GetInsideRadius(); //if(std::fabs( localR2 - InsideRadius2 ) < kCarTolerance ){ G4double InsideRadius = sphereSolid->GetInsideRadius(); if ( localR2 > (InsideRadius-kCarTolerance)*(InsideRadius-kCarTolerance) &&localR2 < (InsideRadius+kCarTolerance)*(InsideRadius+kCarTolerance)){ return fCurrent_In; } } if (aStep->GetPostStepPoint()->GetStepStatus() == fGeomBoundary ){ // Exiting Geometry G4ThreeVector stppos2= aStep->GetPostStepPoint()->GetPosition(); G4ThreeVector localpos2 = theTouchable->GetHistory()->GetTopTransform().TransformPoint(stppos2); G4double localR2 = localpos2.x()*localpos2.x() +localpos2.y()*localpos2.y() +localpos2.z()*localpos2.z(); //G4double InsideRadius2 = // sphereSolid->GetInsideRadius()*sphereSolid->GetInsideRadius(); //if(std::fabs( localR2 - InsideRadius2 ) < kCarTolerance ){ G4double InsideRadius = sphereSolid->GetInsideRadius(); if ( localR2 > (InsideRadius-kCarTolerance)*(InsideRadius-kCarTolerance) &&localR2 < (InsideRadius+kCarTolerance)*(InsideRadius+kCarTolerance)){ return fCurrent_Out; } } return -1; } void G4PSSphereSurfaceCurrent::Initialize(G4HCofThisEvent* HCE) { EvtMap = new G4THitsMap(detector->GetName(), GetName()); if ( HCID < 0 ) HCID = GetCollectionID(0); HCE->AddHitsCollection(HCID, (G4VHitsCollection*)EvtMap); } void G4PSSphereSurfaceCurrent::EndOfEvent(G4HCofThisEvent*) {;} void G4PSSphereSurfaceCurrent::clear(){ EvtMap->clear(); } void G4PSSphereSurfaceCurrent::DrawAll() {;} void G4PSSphereSurfaceCurrent::PrintAll() { G4cout << " MultiFunctionalDet " << detector->GetName() << G4endl; G4cout << " PrimitiveScorer " << GetName() <entries() << G4endl; std::map::iterator itr = EvtMap->GetMap()->begin(); for(; itr != EvtMap->GetMap()->end(); itr++) { G4cout << " copy no.: " << itr->first << " current : " ; if ( divideByArea ) { G4cout << *(itr->second)/GetUnitValue() << " [" <second) << " [tracks]" ; } G4cout << G4endl; } } void G4PSSphereSurfaceCurrent::SetUnit(const G4String& unit) { if ( divideByArea ) { CheckAndSetUnit(unit,"Per Unit Surface"); } else { if (unit == "" ){ unitName = unit; unitValue = 1.0; }else{ G4String msg = "Invalid unit ["+unit+"] (Current unit is [" +GetUnit()+"] )"; G4Exception(GetName(),"DetScorer0000",JustWarning,msg); } } } void G4PSSphereSurfaceCurrent::DefineUnitAndCategory(){ // Per Unit Surface new G4UnitDefinition("percentimeter2","percm2","Per Unit Surface",(1./cm2)); new G4UnitDefinition("permillimeter2","permm2","Per Unit Surface",(1./mm2)); new G4UnitDefinition("permeter2","perm2","Per Unit Surface",(1./m2)); }