// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4CylindricalSurface.hh,v 1.10 2006/06/29 18:39:12 gunter Exp $ // GEANT4 tag $Name: geant4-09-04-beta-01 $ // // ---------------------------------------------------------------------- // Class G4CylindricalSurface // // Class Description: // // Definition of a generic cylindrical surface. // The code for G4CylindricalSurface has been derived from the original // implementation in the "Gismo" package. // // Author: A.Breakstone // Adaptation: J.Sulkimo, P.Urban. // Revisions by: L.Broglia, G.Cosmo. // ---------------------------------------------------------------------- #ifndef __G4CYLINDERSURFACE_H #define __G4CYLINDERSURFACE_H #include "G4Surface.hh" class G4CylindricalSurface : public G4Surface { public: // with description G4CylindricalSurface(); // Default constructor. G4CylindricalSurface( const G4Vector3D& o, const G4Vector3D& a, G4double r ); // Normal constructor: // - first argument is the origin of the G4CylindricalSurface // - second argument is the axis of the G4CylindricalSurface // - third argument is the radius of the G4CylindricalSurface. virtual ~G4CylindricalSurface(); // Destructor. inline G4int operator==( const G4CylindricalSurface& c ) const; // Equality operator. inline G4String GetEntityType() const; // Returns the shape identifier. virtual const char* NameOf() const; // Returns the class name. virtual void PrintOn( std::ostream& os = G4cout ) const; // Printing function, streaming surface's attributes. virtual G4double HowNear( const G4Vector3D& x ) const; // Returns the distance from a point to a G4CylindricalSurface. // The point x is the (input) argument. // The distance is positive if the point is Inside, negative otherwise. virtual G4Vector3D Normal( const G4Vector3D& p ) const; // Returns the Normal unit vector to a G4CylindricalSurface at a point p // on (or nearly on) the G4CylindricalSurface. virtual G4Vector3D SurfaceNormal( const G4Point3D& p ) const; // Returns the Normal unit vector to the G4CylindricalSurface at a point // p on (or nearly on) the G4CylindricalSurface. virtual G4int Inside( const G4Vector3D& x ) const; // Returns 1 if the point x is Inside the G4CylindricalSurface, // returns 0 otherwise. // Outside means that the distance to the G4CylindricalSurface would // be negative. // Uses the HowNear() function to calculate this distance. virtual G4int WithinBoundary( const G4Vector3D& x ) const; // Function overwritten by finite-sized derived classes which returns // 1 if the point x is within the boundary, 0 otherwise. // Since a G4CylindricalSurface is infinite in extent, the function will // just check if the point is on the G4CylindricalSurface (to the surface // precision). virtual G4double Scale() const; // Function overwritten by finite-sized derived classes which returns // the radius, unless it is zero, in which case it returns the smallest // non-zero dimension. // Used for Scale-invariant tests of surface thickness. G4int Intersect(const G4Ray& ry); // Returns the distance along a Ray (straight line with G4Vector3D) to // leave or enter a G4CylindricalSurface. // If the G4Vector3D of the Ray is opposite to that of the Normal to // the G4CylindricalSurface at the intersection point, it will not leave // the G4CylindricalSurface. // Similarly, if the G4Vector3D of the Ray is along that of the Normal // to the G4CylindricalSurface at the intersection point, it will not enter // the G4CylindricalSurface. // This method is called by all finite shapes sub-classed to // G4CylindricalSurface. // A negative result means no intersection. // If no valid intersection point is found, the distance and intersection // point are set to large numbers. inline G4Vector3D GetAxis() const; inline G4double GetRadius() const; // Return the axis and radius of the G4CylindricalSurface. void SetRadius( G4double r ); // Changes the radius of the G4CylindricalSurface. // Requires radius to be non-negative. public: // without description /* virtual G4double distanceAlongRay( G4int which_way, const G4Ray* ry, G4Vector3D& p ) const; // Returns the distance along a Ray to enter or leave a // G4CylindricalSurface. Arguments: // - first (input) argument is +1 to leave or -1 to enter // - second (input) argument is a pointer to the Ray // - third (output) argument returns the intersection point. virtual G4double distanceAlongHelix( G4int which_way, const Helix* hx, G4Vector3D& p ) const; // Returns the distance along a Helix to enter or leave a // G4CylindricalSurface. Arguments: // - first (input) argument is +1 to leave or -1 to enter // - second (input) argument is a pointer to the Helix // - third (output) argument returns the intersection point. virtual void rotate( G4double alpha, G4double beta, G4double gamma, G4ThreeMat& m, G4int inverse ); // Rotates the G4CylindricalSurface (the angles are assumed to be given // in radians). Arguments: // - first about global x-axis by angle alpha, // - second about global y-axis by angle beta, // - third about global z-axis by angle gamma // - fourth (output) argument gives the calculated rotation matrix // - fifth (input) argument is an integer flag which if non-zero // reverses the order of the rotations virtual void rotate( G4double alpha, G4double beta, G4double gamma, G4int inverse ); // Rotates the G4CylindricalSurface (the angles are assumed to be given // in radians). Arguments: // - first about global x-axis by angle alpha, // - second about global y-axis by angle beta, // - third about global z-axis by angle gamma // - fourth (input) argument is an integer flag which if non-zero // reverses the order of the rotations */ protected: // make available to derived classes G4Vector3D axis; // Direction of axis of G4CylindricalSurface (unit vector). G4double radius; // Radius of G4CylindricalSurface. private: G4CylindricalSurface(const G4CylindricalSurface&); G4CylindricalSurface& operator=(const G4CylindricalSurface&); // Private copy constructor and assignment operator. /* virtual G4double gropeAlongHelix( const Helix* hx ) const; // Private function to use a crude technique to find the intersection // of a Helix with a G4CylindricalSurface. It returns the turning angle // along the Helix at which the intersection occurs or -1.0 if no // intersection point is found. The argument to the call is the pointer // to the Helix. */ }; #include "G4CylindricalSurface.icc" #endif