// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4Paraboloid.cc,v 1.9 2009/02/27 15:10:46 tnikitin Exp $ // GEANT4 tag $Name: geant4-09-04-beta-01 $ // // class G4Paraboloid // // Implementation for G4Paraboloid class // // Author : Lukas Lindroos (CERN), July 2007 // Revised: Tatiana Nikitina (CERN) // -------------------------------------------------------------------- #include "globals.hh" #include "G4Paraboloid.hh" #include "G4VoxelLimits.hh" #include "G4AffineTransform.hh" #include "meshdefs.hh" #include "Randomize.hh" #include "G4VGraphicsScene.hh" #include "G4Polyhedron.hh" #include "G4NURBS.hh" #include "G4NURBSbox.hh" #include "G4VisExtent.hh" using namespace CLHEP; /////////////////////////////////////////////////////////////////////////////// // // constructor - check parameters G4Paraboloid::G4Paraboloid(const G4String& pName, G4double pDz, G4double pR1, G4double pR2) : G4VSolid(pName),fpPolyhedron(0), fCubicVolume(0.) { if(pDz > 0. && pR2 > pR1 && pR1 >= 0.) { r1 = pR1; r2 = pR2; dz = pDz; } else { G4cerr << "Error - G4Paraboloid::G4Paraboloid(): " << GetName() << G4endl << "Z half-length must be larger than zero or R1>=R2 " << G4endl; G4Exception("G4Paraboloid::G4Paraboloid()", "InvalidSetup", FatalException, "Invalid dimensions. Negative Input Values or R1>=R2."); } // r1^2 = k1 * (-dz) + k2 // r2^2 = k1 * ( dz) + k2 // => r1^2 + r2^2 = k2 + k2 => k2 = (r2^2 + r1^2) / 2 // and r2^2 - r1^2 = k1 * dz - k1 * (-dz) => k1 = (r2^2 - r1^2) / 2 / dz k1 = (r2 * r2 - r1 * r1) / 2 / dz; k2 = (r2 * r2 + r1 * r1) / 2; fSurfaceArea = 0.; } /////////////////////////////////////////////////////////////////////////////// // // Fake default constructor - sets only member data and allocates memory // for usage restricted to object persistency. // G4Paraboloid::G4Paraboloid( __void__& a ) : G4VSolid(a), fpPolyhedron(0), fCubicVolume(0.) { fSurfaceArea = 0.; } /////////////////////////////////////////////////////////////////////////////// // // Destructor G4Paraboloid::~G4Paraboloid() { } ///////////////////////////////////////////////////////////////////////// // // Dispatch to parameterisation for replication mechanism dimension // computation & modification. //void ComputeDimensions( G4VPVParamerisation p, // const G4Int n, // const G4VPhysicalVolume* pRep ) //{ // p->ComputeDimensions(*this,n,pRep) ; //} /////////////////////////////////////////////////////////////////////////////// // // Calculate extent under transform and specified limit G4bool G4Paraboloid::CalculateExtent(const EAxis pAxis, const G4VoxelLimits& pVoxelLimit, const G4AffineTransform& pTransform, G4double& pMin, G4double& pMax) const { G4double xMin = -r2 + pTransform.NetTranslation().x(), xMax = r2 + pTransform.NetTranslation().x(), yMin = -r2 + pTransform.NetTranslation().y(), yMax = r2 + pTransform.NetTranslation().y(), zMin = -dz + pTransform.NetTranslation().z(), zMax = dz + pTransform.NetTranslation().z(); if(!pTransform.IsRotated() || pTransform.NetRotation()(G4ThreeVector(0, 0, 1)) == G4ThreeVector(0, 0, 1)) { if(pVoxelLimit.IsXLimited()) { if(pVoxelLimit.GetMaxXExtent() < xMin - 0.5 * kCarTolerance || pVoxelLimit.GetMinXExtent() > xMax + 0.5 * kCarTolerance) { return false; } else { if(pVoxelLimit.GetMinXExtent() > xMin) { xMin = pVoxelLimit.GetMinXExtent(); } if(pVoxelLimit.GetMaxXExtent() < xMax) { xMax = pVoxelLimit.GetMaxXExtent(); } } } if(pVoxelLimit.IsYLimited()) { if(pVoxelLimit.GetMaxYExtent() < yMin - 0.5 * kCarTolerance || pVoxelLimit.GetMinYExtent() > yMax + 0.5 * kCarTolerance) { return false; } else { if(pVoxelLimit.GetMinYExtent() > yMin) { yMin = pVoxelLimit.GetMinYExtent(); } if(pVoxelLimit.GetMaxYExtent() < yMax) { yMax = pVoxelLimit.GetMaxYExtent(); } } } if(pVoxelLimit.IsZLimited()) { if(pVoxelLimit.GetMaxZExtent() < zMin - 0.5 * kCarTolerance || pVoxelLimit.GetMinZExtent() > zMax + 0.5 * kCarTolerance) { return false; } else { if(pVoxelLimit.GetMinZExtent() > zMin) { zMin = pVoxelLimit.GetMinZExtent(); } if(pVoxelLimit.GetMaxZExtent() < zMax) { zMax = pVoxelLimit.GetMaxZExtent(); } } } switch(pAxis) { case kXAxis: pMin = xMin; pMax = xMax; break; case kYAxis: pMin = yMin; pMax = yMax; break; case kZAxis: pMin = zMin; pMax = zMax; break; default: pMin = 0; pMax = 0; return false; } } else { G4bool existsAfterClip=true; // Calculate rotated vertex coordinates G4int noPolygonVertices=0; G4ThreeVectorList* vertices = CreateRotatedVertices(pTransform,noPolygonVertices); if(pAxis == kXAxis || pAxis == kYAxis || pAxis == kZAxis) { pMin = kInfinity; pMax = -kInfinity; for(G4ThreeVectorList::iterator it = vertices->begin(); it < vertices->end(); it++) { if(pMin > (*it)[pAxis]) pMin = (*it)[pAxis]; if((*it)[pAxis] < pVoxelLimit.GetMinExtent(pAxis)) { pMin = pVoxelLimit.GetMinExtent(pAxis); } if(pMax < (*it)[pAxis]) { pMax = (*it)[pAxis]; } if((*it)[pAxis] > pVoxelLimit.GetMaxExtent(pAxis)) { pMax = pVoxelLimit.GetMaxExtent(pAxis); } } if(pMin > pVoxelLimit.GetMaxExtent(pAxis) || pMax < pVoxelLimit.GetMinExtent(pAxis)) { existsAfterClip = false; } } else { pMin = 0; pMax = 0; existsAfterClip = false; } delete vertices; return existsAfterClip; } return true; } /////////////////////////////////////////////////////////////////////////////// // // Return whether point inside/outside/on surface EInside G4Paraboloid::Inside(const G4ThreeVector& p) const { // First check is the point is above or below the solid. // if(std::fabs(p.z()) > dz + 0.5 * kCarTolerance) { return kOutside; } G4double rho2 = p.perp2(), rhoSurfTimesTol2 = (k1 * p.z() + k2) * sqr(kCarTolerance), A = rho2 - ((k1 *p.z() + k2) + 0.25 * kCarTolerance * kCarTolerance); if(A < 0 && sqr(A) > rhoSurfTimesTol2) { // Actually checking rho < radius of paraboloid at z = p.z(). // We're either inside or in lower/upper cutoff area. if(std::fabs(p.z()) > dz - 0.5 * kCarTolerance) { // We're in the upper/lower cutoff area, sides have a paraboloid shape // maybe further checks should be made to make these nicer return kSurface; } else { return kInside; } } else if(A <= 0 || sqr(A) < rhoSurfTimesTol2) { // We're in the parabolic surface. return kSurface; } else { return kOutside; } } /////////////////////////////////////////////////////////////////////////////// // G4ThreeVector G4Paraboloid::SurfaceNormal( const G4ThreeVector& p) const { G4ThreeVector n(0, 0, 0); if(std::fabs(p.z()) > dz + 0.5 * kCarTolerance) { // If above or below just return normal vector for the cutoff plane. n = G4ThreeVector(0, 0, p.z()/std::fabs(p.z())); } else if(std::fabs(p.z()) > dz - 0.5 * kCarTolerance) { // This means we're somewhere in the plane z = dz or z = -dz. // (As far as the program is concerned anyway. if(p.z() < 0) // Are we in upper or lower plane? { if(p.perp2() > sqr(r1 + 0.5 * kCarTolerance)) { n = G4ThreeVector(p.x(), p.y(), -k1 / 2).unit(); } else if(r1 < 0.5 * kCarTolerance || p.perp2() > sqr(r1 - 0.5 * kCarTolerance)) { n = G4ThreeVector(p.x(), p.y(), 0.).unit() + G4ThreeVector(0., 0., -1.).unit(); n = n.unit(); } else { n = G4ThreeVector(0., 0., -1.); } } else { if(p.perp2() > sqr(r2 + 0.5 * kCarTolerance)) { n = G4ThreeVector(p.x(), p.y(), 0.).unit(); } else if(r2 < 0.5 * kCarTolerance || p.perp2() > sqr(r2 - 0.5 * kCarTolerance)) { n = G4ThreeVector(p.x(), p.y(), 0.).unit() + G4ThreeVector(0., 0., 1.).unit(); n = n.unit(); } else { n = G4ThreeVector(0., 0., 1.); } } } else { G4double rho2 = p.perp2(); G4double rhoSurfTimesTol2 = (k1 * p.z() + k2) * sqr(kCarTolerance); G4double A = rho2 - ((k1 *p.z() + k2) + 0.25 * kCarTolerance * kCarTolerance); if(A < 0 && sqr(A) > rhoSurfTimesTol2) { // Actually checking rho < radius of paraboloid at z = p.z(). // We're inside. if(p.mag2() != 0) { n = p.unit(); } } else if(A <= 0 || sqr(A) < rhoSurfTimesTol2) { // We're in the parabolic surface. n = G4ThreeVector(p.x(), p.y(), - k1 / 2).unit(); } else { n = G4ThreeVector(p.x(), p.y(), - k1 / 2).unit(); } } if(n.mag2() == 0) { G4cerr << "WARNING - G4Paraboloid::SurfaceNormal(p)" << G4endl << " p = " << 1 / mm * p << " mm" << G4endl; G4Exception("G4Paraboloid::SurfaceNormal(p)", "Notification", JustWarning, "No normal defined for this point p."); } return n; } /////////////////////////////////////////////////////////////////////////////// // // Calculate distance to shape from outside, along normalised vector // - return kInfinity if no intersection // G4double G4Paraboloid::DistanceToIn( const G4ThreeVector& p, const G4ThreeVector& v ) const { G4double rho2 = p.perp2(), paraRho2 = std::fabs(k1 * p.z() + k2); G4double tol2 = kCarTolerance*kCarTolerance; G4double tolh = 0.5*kCarTolerance; if(r2 && p.z() > - tolh + dz) { // If the points is above check for intersection with upper edge. if(v.z() < 0) { G4double intersection = (dz - p.z()) / v.z(); // With plane z = dz. if(sqr(p.x() + v.x()*intersection) + sqr(p.y() + v.y()*intersection) < sqr(r2 + 0.5 * kCarTolerance)) { if(p.z() < tolh + dz) { return 0; } else { return intersection; } } } else // Direction away, no possibility of intersection { return kInfinity; } } else if(r1 && p.z() < tolh - dz) { // If the points is belove check for intersection with lower edge. if(v.z() > 0) { G4double intersection = (-dz - p.z()) / v.z(); // With plane z = -dz. if(sqr(p.x() + v.x()*intersection) + sqr(p.y() + v.y()*intersection) < sqr(r1 + 0.5 * kCarTolerance)) { if(p.z() > -tolh - dz) { return 0; } else { return intersection; } } } else // Direction away, no possibility of intersection { return kInfinity; } } G4double A = k1 / 2 * v.z() - p.x() * v.x() - p.y() * v.y(), vRho2 = v.perp2(), intersection, B = (k1 * p.z() + k2 - rho2) * vRho2; if ( ( (rho2 > paraRho2) && (sqr(rho2-paraRho2-0.25*tol2) > tol2*paraRho2) ) || (p.z() < - dz+kCarTolerance) || (p.z() > dz-kCarTolerance) ) // Make sure it's safely outside. { // Is there a problem with squaring rho twice? if(!vRho2) // Needs to be treated seperately. { intersection = ((rho2 - k2)/k1 - p.z())/v.z(); if(intersection < 0) { return kInfinity; } else if(std::fabs(p.z() + v.z() * intersection) <= dz) { return intersection; } else { return kInfinity; } } else if(A*A + B < 0) // No real intersections. { return kInfinity; } else { intersection = (A - std::sqrt(B + sqr(A))) / vRho2; if(intersection < 0) { return kInfinity; } else if(std::fabs(p.z() + intersection * v.z()) < dz + tolh) { return intersection; } else { return kInfinity; } } } else if(sqr(rho2 - paraRho2 - .25 * tol2) <= tol2 * paraRho2) { // If this is true we're somewhere in the border. G4ThreeVector normal(p.x(), p.y(), -k1/2); if(normal.dot(v) <= 0) { return 0; } else { return kInfinity; } } else { G4cerr << "WARNING - G4Paraboloid::DistanceToIn(p,v)" << G4endl << " p = " << p * (1/mm) << " mm" << G4endl << " v = " << v * (1/mm) << " mm" << G4endl; if(Inside(p) == kInside) { G4Exception("G4Paraboloid::DistanceToIn(p,v)", "Notification", JustWarning, "Point p is inside!"); } else { G4Exception("G4Paraboloid::DistanceToIn(p,v)", "Notification", JustWarning, "There's a bug in this function (apa)!"); } return 0; } } /////////////////////////////////////////////////////////////////////////////// // // Calculate distance (<= actual) to closest surface of shape from outside // - Return 0 if point inside G4double G4Paraboloid::DistanceToIn(const G4ThreeVector& p) const { G4double safe = 0; if(std::fabs(p.z()) > dz + 0.5 * kCarTolerance) { // If we're below or above the paraboloid treat it as a cylinder with // radius r2. if(p.perp2() > sqr(r2 + 0.5 * kCarTolerance)) { // This algorithm is exact for now but contains 2 sqrt calculations. // Might be better to replace with approximated version G4double dRho = p.perp() - r2; safe = std::sqrt(sqr(dRho) + sqr(std::fabs(p.z()) - dz)); } else { safe = std::fabs(p.z()) - dz; } } else { G4double paraRho = std::sqrt(k1 * p.z() + k2); G4double rho = p.perp(); if(rho > paraRho + 0.5 * kCarTolerance) { // Should check the value of paraRho here, // for small values the following algorithm is bad. safe = k1 / 2 * (-paraRho + rho) / rho; if(safe < 0) { safe = 0; } } } return safe; } /////////////////////////////////////////////////////////////////////////////// // // Calculate distance to surface of shape from 'inside' G4double G4Paraboloid::DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v, const G4bool calcNorm, G4bool *validNorm, G4ThreeVector *n ) const { G4double rho2 = p.perp2(), paraRho2 = std::fabs(k1 * p.z() + k2); G4double vRho2 = v.perp2(), intersection; G4double tol2 = kCarTolerance*kCarTolerance; G4double tolh = 0.5*kCarTolerance; if(calcNorm) { *validNorm = false; } // We have that the particle p follows the line x = p + s * v // meaning x = p.x() + s * v.x(), y = p.y() + s * v.y() and // z = p.z() + s * v.z() // The equation for all points on the surface (surface expanded for // to include all z) x^2 + y^2 = k1 * z + k2 => .. => // => s = (A +- std::sqrt(A^2 + B)) / vRho2 // where: // G4double A = k1 / 2 * v.z() - p.x() * v.x() - p.y() * v.y(); // // and: // G4double B = (-rho2 + paraRho2) * vRho2; if ( rho2 < paraRho2 && sqr(rho2 - paraRho2 - 0.25 * tol2) > tol2 * paraRho2 && std::fabs(p.z()) < dz - kCarTolerance) { // Make sure it's safely inside. if(v.z() > 0) { // It's heading upwards, check where it colides with the plane z = dz. // When it does, is that in the surface of the paraboloid. // z = p.z() + variable * v.z() for all points the particle can go. // => variable = (z - p.z()) / v.z() so intersection must be: intersection = (dz - p.z()) / v.z(); G4ThreeVector ip = p + intersection * v; // Point of intersection. if(ip.perp2() < sqr(r2 + kCarTolerance)) { if(calcNorm) { *n = G4ThreeVector(0, 0, 1); if(r2 < tolh || ip.perp2() > sqr(r2 - tolh)) { *n += G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit(); *n = n->unit(); } *validNorm = true; } return intersection; } } else if(v.z() < 0) { // It's heading downwards, check were it colides with the plane z = -dz. // When it does, is that in the surface of the paraboloid. // z = p.z() + variable * v.z() for all points the particle can go. // => variable = (z - p.z()) / v.z() so intersection must be: intersection = (-dz - p.z()) / v.z(); G4ThreeVector ip = p + intersection * v; // Point of intersection. if(ip.perp2() < sqr(r1 + tolh)) { if(calcNorm) { *n = G4ThreeVector(0, 0, -1); if(r1 < tolh || ip.perp2() > sqr(r1 - tolh)) { *n += G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit(); *n = n->unit(); } *validNorm = true; } return intersection; } } // Now check for collisions with paraboloid surface. if(vRho2 == 0) // Needs to be treated seperately. { intersection = ((rho2 - k2)/k1 - p.z())/v.z(); if(calcNorm) { G4ThreeVector intersectionP = p + v * intersection; *n = G4ThreeVector(intersectionP.x(), intersectionP.y(), -k1/2); *n = n->unit(); *validNorm = true; } return intersection; } else if( ((A <= 0) && (B >= sqr(A) * (sqr(vRho2) - 1))) || (A >= 0)) { // intersection = (A + std::sqrt(B + sqr(A))) / vRho2; // The above calculation has a precision problem: // known problem of solving quadratic equation with small A A = A/vRho2; B = (k1 * p.z() + k2 - rho2)/vRho2; intersection = B/(-A + std::sqrt(B + sqr(A))); if(calcNorm) { G4ThreeVector intersectionP = p + v * intersection; *n = G4ThreeVector(intersectionP.x(), intersectionP.y(), -k1/2); *n = n->unit(); *validNorm = true; } return intersection; } G4cerr << "WARNING - G4Paraboloid::DistanceToOut(p,v,...)" << G4endl << " p = " << p << G4endl << " v = " << v << G4endl; G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "Notification", JustWarning, "There is no intersection between given line and solid!"); return kInfinity; } else if ( (rho2 < paraRho2 + kCarTolerance || sqr(rho2 - paraRho2 - 0.25 * tol2) < tol2 * paraRho2 ) && std::fabs(p.z()) < dz + tolh) { // If this is true we're somewhere in the border. G4ThreeVector normal = G4ThreeVector (p.x(), p.y(), -k1/2); if(std::fabs(p.z()) > dz - tolh) { // We're in the lower or upper edge // if( ((v.z() > 0) && (p.z() > 0)) || ((v.z() < 0) && (p.z() < 0)) ) { // If we're heading out of the object that is treated here if(calcNorm) { *validNorm = true; if(p.z() > 0) { *n = G4ThreeVector(0, 0, 1); } else { *n = G4ThreeVector(0, 0, -1); } } return 0; } if(v.z() == 0) { // Case where we're moving inside the surface needs to be // treated separately. // Distance until it goes out through a side is returned. G4double r = (p.z() > 0)? r2 : r1; G4double pDotV = p.dot(v); G4double A = vRho2 * ( sqr(r) - sqr(p.x()) - sqr(p.y())); intersection = (-pDotV + std::sqrt(A + sqr(pDotV))) / vRho2; if(calcNorm) { *validNorm = true; *n = (G4ThreeVector(0, 0, p.z()/std::fabs(p.z())) + G4ThreeVector(p.x() + v.x() * intersection, p.y() + v.y() * intersection, -k1/2).unit()).unit(); } return intersection; } } // // Problem in the Logic :: Following condition for point on upper surface // and Vz<0 will return 0 (Problem #1015), but // it has to return intersection with parabolic // surface or with lower plane surface (z = -dz) // The logic has to be :: If not found intersection until now, // do not exit but continue to search for possible intersection. // Only for point situated on both borders (Z and parabolic) // this condition has to be taken into account and done later // // // else if(normal.dot(v) >= 0) // { // if(calcNorm) // { // *validNorm = true; // *n = normal.unit(); // } // return 0; // } if(v.z() > 0) { // Check for collision with upper edge. intersection = (dz - p.z()) / v.z(); G4ThreeVector ip = p + intersection * v; if(ip.perp2() < sqr(r2 - tolh)) { if(calcNorm) { *validNorm = true; *n = G4ThreeVector(0, 0, 1); } return intersection; } else if(ip.perp2() < sqr(r2 + tolh)) { if(calcNorm) { *validNorm = true; *n = G4ThreeVector(0, 0, 1) + G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit(); *n = n->unit(); } return intersection; } } if( v.z() < 0) { // Check for collision with lower edge. intersection = (-dz - p.z()) / v.z(); G4ThreeVector ip = p + intersection * v; if(ip.perp2() < sqr(r1 - tolh)) { if(calcNorm) { *validNorm = true; *n = G4ThreeVector(0, 0, -1); } return intersection; } else if(ip.perp2() < sqr(r1 + tolh)) { if(calcNorm) { *validNorm = true; *n = G4ThreeVector(0, 0, -1) + G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit(); *n = n->unit(); } return intersection; } } // Note: comparison with zero below would not be correct ! // if(std::fabs(vRho2) > tol2) // precision error in the calculation of { // intersection = (A+std::sqrt(B+sqr(A)))/vRho2 A = A/vRho2; B = (k1 * p.z() + k2 - rho2); if(std::fabs(B)>kCarTolerance) { B = (B)/vRho2; intersection = B/(-A + std::sqrt(B + sqr(A))); } else // Point is On both borders: Z and parabolic { // solution depends on normal.dot(v) sign if(normal.dot(v) >= 0) { if(calcNorm) { *validNorm = true; *n = normal.unit(); } return 0; } intersection = 2.*A; } } else { intersection = ((rho2 - k2) / k1 - p.z()) / v.z(); } if(calcNorm) { *validNorm = true; *n = G4ThreeVector(p.x() + intersection * v.x(), p.y() + intersection * v.y(), - k1 / 2); *n = n->unit(); } return intersection; } else { #ifdef G4SPECSDEBUG if(kOutside == Inside(p)) { G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "Notification", JustWarning, "Point p is outside!"); } else G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "Notification", JustWarning, "There's an error in this functions code."); #endif return kInfinity; } return 0; } /////////////////////////////////////////////////////////////////////////////// // // Calculate distance (<=actual) to closest surface of shape from inside G4double G4Paraboloid::DistanceToOut(const G4ThreeVector& p) const { G4double safe=0.0,rho,safeR,safeZ ; G4double tanRMax,secRMax,pRMax ; #ifdef G4SPECSDEBUG if( Inside(p) == kOutside ) { G4cout.precision(16) ; G4cout << G4endl ; DumpInfo(); G4cout << "Position:" << G4endl << G4endl ; G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; G4Exception("G4Paraboloid::DistanceToOut(p)", "Notification", JustWarning, "Point p is outside !?" ); } #endif rho = p.perp(); safeZ = dz - std::fabs(p.z()) ; tanRMax = (r2 - r1)*0.5/dz ; secRMax = std::sqrt(1.0 + tanRMax*tanRMax) ; pRMax = tanRMax*p.z() + (r1+r2)*0.5 ; safeR = (pRMax - rho)/secRMax ; if (safeZ < safeR) { safe = safeZ; } else { safe = safeR; } if ( safe < 0.5 * kCarTolerance ) { safe = 0; } return safe ; } ////////////////////////////////////////////////////////////////////////// // // G4EntityType G4GeometryType G4Paraboloid::GetEntityType() const { return G4String("G4Paraboloid"); } ////////////////////////////////////////////////////////////////////////// // // Stream object contents to an output stream std::ostream& G4Paraboloid::StreamInfo( std::ostream& os ) const { os << "-----------------------------------------------------------\n" << " *** Dump for solid - " << GetName() << " ***\n" << " ===================================================\n" << " Solid type: G4Paraboloid\n" << " Parameters: \n" << " z half-axis: " << dz/mm << " mm \n" << " radius at -dz: " << r1/mm << " mm \n" << " radius at dz: " << r2/mm << " mm \n" << "-----------------------------------------------------------\n"; return os; } //////////////////////////////////////////////////////////////////// // // GetPointOnSurface G4ThreeVector G4Paraboloid::GetPointOnSurface() const { G4double A = (fSurfaceArea == 0)? CalculateSurfaceArea(): fSurfaceArea; G4double z = RandFlat::shoot(0.,1.); G4double phi = RandFlat::shoot(0., twopi); if(pi*(sqr(r1) + sqr(r2))/A >= z) { G4double rho; if(pi * sqr(r1) / A > z) { rho = RandFlat::shoot(0., 1.); rho = std::sqrt(rho); rho *= r1; return G4ThreeVector(rho * std::cos(phi), rho * std::sin(phi), -dz); } else { rho = RandFlat::shoot(0., 1); rho = std::sqrt(rho); rho *= r2; return G4ThreeVector(rho * std::cos(phi), rho * std::sin(phi), dz); } } else { z = RandFlat::shoot(0., 1.)*2*dz - dz; return G4ThreeVector(std::sqrt(z*k1 + k2)*std::cos(phi), std::sqrt(z*k1 + k2)*std::sin(phi), z); } } G4ThreeVectorList* G4Paraboloid::CreateRotatedVertices(const G4AffineTransform& pTransform, G4int& noPolygonVertices) const { G4ThreeVectorList *vertices; G4ThreeVector vertex; G4double meshAnglePhi, cosMeshAnglePhiPer2, crossAnglePhi, coscrossAnglePhi, sincrossAnglePhi, sAnglePhi, sRho, dRho, rho, lastRho = 0., swapRho; G4double rx, ry, rz, k3, k4, zm; G4int crossSectionPhi, noPhiCrossSections, noRhoSections; // Phi cross sections // noPhiCrossSections = G4int(twopi/kMeshAngleDefault)+1; if (noPhiCrossSectionskMaxMeshSections) { noPhiCrossSections=kMaxMeshSections; } meshAnglePhi=twopi/(noPhiCrossSections-1); sAnglePhi = -meshAnglePhi*0.5*0; cosMeshAnglePhiPer2 = std::cos(meshAnglePhi / 2.); noRhoSections = G4int(pi/2/kMeshAngleDefault) + 1; // There is no obvious value for noRhoSections, at the moment the parabola is // viewed as a quarter circle mean this formula for it. // An alternetive would be to calculate max deviation from parabola and // keep adding new vertices there until it was under a decided constant. // maxDeviation on a line between points (rho1, z1) and (rho2, z2) is given // by rhoMax = sqrt(k1 * z + k2) - z * (rho2 - rho1) // / (z2 - z1) - (rho1 * z2 - rho2 * z1) / (z2 - z1) // where z is k1 / 2 * (rho1 + rho2) - k2 / k1 sRho = r1; dRho = (r2 - r1) / double(noRhoSections - 1); vertices=new G4ThreeVectorList(); if (vertices) { for (crossSectionPhi=0; crossSectionPhipush_back(pTransform.TransformPoint(vertex)); } } // Phi noPolygonVertices = noRhoSections ; } else { DumpInfo(); G4Exception("G4Paraboloid::CreateRotatedVertices()", "FatalError", FatalException, "Error in allocation of vertices. Out of memory !"); } return vertices; } ///////////////////////////////////////////////////////////////////////////// // // Methods for visualisation void G4Paraboloid::DescribeYourselfTo (G4VGraphicsScene& scene) const { scene.AddSolid(*this); } G4NURBS* G4Paraboloid::CreateNURBS () const { // Box for now!!! // return new G4NURBSbox(r1, r1, dz); } G4Polyhedron* G4Paraboloid::CreatePolyhedron () const { return new G4PolyhedronParaboloid(r1, r2, dz, 0., twopi); } G4Polyhedron* G4Paraboloid::GetPolyhedron () const { if (!fpPolyhedron || fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != fpPolyhedron->GetNumberOfRotationSteps()) { delete fpPolyhedron; fpPolyhedron = CreatePolyhedron(); } return fpPolyhedron; }