// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // testG4Polyhedra.cc is derived from testG4Polycone.cc 13/10/2010 // // Cvs version: $ Id $ // Cvs tag : $ Name $ #include "G4Timer.hh" #include #include #include #include #include "G4ios.hh" #include "G4Polyhedra.hh" #include "globals.hh" #include "G4Vector3D.hh" #include "G4Point3D.hh" #include "G4GeometryTolerance.hh" G4double kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); int main(int, char **) { double RMINVec[8]; RMINVec[0] = 30; RMINVec[1] = 30; RMINVec[2] = 0; RMINVec[3] = 0; RMINVec[4] = 0; RMINVec[5] = 0; RMINVec[6] = 40; RMINVec[7] = 40; double RMAXVec[8]; RMAXVec[0] = 70; RMAXVec[1] = 70; RMAXVec[2] = 70; RMAXVec[3] = 40; RMAXVec[4] = 40; RMAXVec[5] = 80; RMAXVec[6] = 80; RMAXVec[7] = 60; double Z_Values[8]; Z_Values[0] =-30; Z_Values[1] =-20; Z_Values[2] =-10; Z_Values[3] = 0; Z_Values[4] = 10; Z_Values[5] = 20; Z_Values[6] = 30; Z_Values[7] = 40; double Phi_Values[1]; Phi_Values[0]=0*deg; Phi_Values[1]=45.*deg; // Phi_Values[0]=0; // Phi_Values[1]=2*pi; G4cout << "\n======= Polyhedra test ========"; G4Polyhedra *MyPCone = new G4Polyhedra ("MyPCone", Phi_Values[0], Phi_Values[1], 5 , 8 , Z_Values , RMINVec , RMAXVec ); G4cout << "\n\nPolyhedra is created ! "< Check methods : // - Inside // - DistanceToIn // - DistanceToOut EInside in; G4cout<<"\n\n=================================================="; G4ThreeVector pt(0, -100, 24); G4int y; for (y = -100; y<=100; y+=10) { pt.setY(y); in = MyPCone->Inside(pt); G4cout << "\nx=" << pt.x() << " y=" << pt.y() << " z=" << pt.z(); if( in == kInside ) G4cout <<" is inside"; else if( in == kOutside ) G4cout <<" is outside"; else G4cout <<" is on the surface"; } G4cout<<"\n\n=================================================="; G4ThreeVector start( 0, 0, -30); G4ThreeVector dir(1./std::sqrt(2.), 1./std::sqrt(2.), 0); G4double d; G4int z; G4cout<<"\nPdep is (0, 0, z)"; G4cout<<"\nDir is (1, 1, 0)\n"; for(z=-30; z<=50; z+=5) { start.setZ(z); in = MyPCone->Inside(start); G4cout<< "x=" << start.x() << " y=" << start.y() << " z=" << start.z(); if( in == kInside ) { G4cout <<" is inside"; d = MyPCone->DistanceToOut(start, dir); G4cout<<" distance to out="<DistanceToOut(start); G4cout<<" closest distance to out="<DistanceToIn(start, dir); G4cout<<" distance to in="<DistanceToIn(start); G4cout<<" closest distance to in="<Inside(start4); if( in == kInside ) { G4cout <<" is inside"; d4 = MyPCone->DistanceToOut(start4, dir4); G4cout<<" distance to out="<DistanceToOut(start4); G4cout<<" closest distance to out="<DistanceToIn(start4, dir4); G4cout<<" distance to in="<DistanceToIn(start4); G4cout<<" closest distance to in="<DistanceToIn(start4, dir4); G4cout<<" distance to in="<DistanceToIn(start4); G4cout<<" closest distance to in="<Inside(start5); if( in == kInside ) { G4cout <<" is inside"; d5 = MyPCone->DistanceToOut(start5, dir5); G4cout<<" distance to out="<DistanceToOut(start5); G4cout<<" closest distance to out="<DistanceToIn(start5, dir5); G4cout<<" distance to in="<DistanceToIn(start5); G4cout<<" closest distance to in="<DistanceToIn(start5, dir5); G4cout<<" distance to in="<DistanceToIn(start5); G4cout<<" closest distance to in="<Inside(p1) == kSurface); assert(MyPCone->Inside(p2) == kSurface); assert(MyPCone->Inside(p3) == kInside); assert(MyPCone->Inside(p4) == kInside); assert(MyPCone->Inside(p5) == kOutside); assert(MyPCone->Inside(p6) == kOutside); // DistanceToIn assert(std::fabs((MyPCone->DistanceToIn(p1,dirx))) < kCarTolerance); assert(std::fabs((MyPCone->DistanceToIn(p1,-diry)))< kCarTolerance); assert(std::fabs((MyPCone->DistanceToIn(p2,diry))) < kCarTolerance); assert(std::fabs((MyPCone->DistanceToIn(p5,dirx) -40.12368793931)) < kCarTolerance); assert(std::fabs((MyPCone->DistanceToIn(p6,-dirx) -0.87631206069)) < kCarTolerance); assert(std::fabs((MyPCone->DistanceToIn(p6,dirz) -0.218402670765))< kCarTolerance); // DistanceToOut assert(std::fabs((MyPCone->DistanceToOut (p1,-dirx))) < kCarTolerance); assert(std::fabs((MyPCone->DistanceToOut (p3,-diry) -1.) ) < kCarTolerance); assert(std::fabs((MyPCone->DistanceToOut (p3,dirz) -1.27382374146))< kCarTolerance); assert(std::fabs((MyPCone->DistanceToOut(p4,dirz) -10.)) < kCarTolerance); assert(std::fabs((MyPCone->DistanceToOut(p4,dirx) -34.8538673445)) < kCarTolerance); assert(std::fabs((MyPCone->DistanceToOut(p4,diry) -40.)) < kCarTolerance); return EXIT_SUCCESS; }