//
// ********************************************************************
// * License and Disclaimer *
// * *
// * The Geant4 software is copyright of the Copyright Holders of *
// * the Geant4 Collaboration. It is provided under the terms and *
// * conditions of the Geant4 Software License, included in the file *
// * LICENSE and available at http://cern.ch/geant4/license . These *
// * include a list of copyright holders. *
// * *
// * Neither the authors of this software system, nor their employing *
// * institutes,nor the agencies providing financial support for this *
// * work make any representation or warranty, express or implied, *
// * regarding this software system or assume any liability for its *
// * use. Please see the license in the file LICENSE and URL above *
// * for the full disclaimer and the limitation of liability. *
// * *
// * This code implementation is the result of the scientific and *
// * technical work of the GEANT4 collaboration. *
// * By using, copying, modifying or distributing the software (or *
// * any work based on the software) you agree to acknowledge its *
// * use in resulting scientific publications, and indicate your *
// * acceptance of all terms of the Geant4 Software license. *
// ********************************************************************
//
// $Id: G4LowEnergyPolarizedRayleighTest.cc,v 1.5 2006/06/29 19:44:07 gunter Exp $
// GEANT4 tag $Name: geant4-09-04-ref-00 $
//
// --------------------------------------------------------------
//
// File name: G4LowEnergyPolarizedRayleighTest.cc
//
// Author: Capra Riccardo
//
// Creation date: May 2005
//
// History:
// -----------
// 03 May 2005 R. Capra 1st implementation
//
//----------------------------------------------------------------
//! \file G4LowEnergyPolarizedRayleighTest.cc
//! \brief Tests G4LowEnergyPolarizedRayleigh process
//! \author Capra Riccardo
//! \date May 2005
//! \par History:
//!
//! 03 May 2005 | R. Capra | 1st implementation |
//!
//! \sa G4LowEnergyPolarizedRayleigh.hh
#include "globals.hh"
#include "G4ios.hh"
#include
#include
#include
#include
#include "G4ParticleDefinition.hh"
#include "G4ParticleTypes.hh"
#include "G4ParticleTable.hh"
#include "G4Material.hh"
#include "G4MaterialTable.hh"
#include "G4VDiscreteProcess.hh"
#include "G4VLowEnergyDiscretePhotonProcess.hh"
#include "G4VProcess.hh"
#include "G4ProcessManager.hh"
#include "G4LowEnergyPolarizedRayleigh.hh"
#include "G4LowEnergyRayleigh.hh"
#include "G4EnergyLossTables.hh"
#include "G4VParticleChange.hh"
#include "G4ParticleChange.hh"
#include "G4DynamicParticle.hh"
#include "G4ForceCondition.hh"
#include "G4LowEnergyBremsstrahlung.hh"
#include "G4LowEnergyIonisation.hh"
#include "G4eIonisation.hh"
#include "G4MultipleScattering.hh"
#include "G4eIonisation.hh"
#include "G4eBremsstrahlung.hh"
#include "G4eplusAnnihilation.hh"
#include "G4ComptonScattering.hh"
#include "G4PhotoElectricEffect.hh"
#include "G4RunManager.hh"
#include "G4Electron.hh"
#include "G4Positron.hh"
#include "G4Gamma.hh"
#include "G4GRSVolume.hh"
#include "G4Box.hh"
#include "G4PVPlacement.hh"
#include "G4Step.hh"
#include "G4ProductionCutsTable.hh"
#include "G4MaterialCutsCouple.hh"
#include "G4UnitsTable.hh"
#include "AIDA/IManagedObject.h"
#include "AIDA/IAnalysisFactory.h"
#include "AIDA/ITreeFactory.h"
#include "AIDA/ITree.h"
#include "AIDA/IHistogramFactory.h"
#include "AIDA/IHistogram1D.h"
#include "AIDA/IHistogram2D.h"
#include "AIDA/IHistogram3D.h"
#include "AIDA/ITupleFactory.h"
#include "AIDA/ITuple.h"
//! \brief Options structure
struct Options
{
//! \brief Mean free path test
bool meanFreePathTest;
//! \brief Post step do it test
bool postStepDoItTest;
//! \brief Post step do it test
bool randomEnergy;
//! \brief Output file name
const char *outputFileName;
//! \brief Material name
const char *material;
//! \brief Process name
const char *process;
//! \brief Minimum energy
G4double minEnergy;
//! \brief Maximum energy
G4double maxEnergy;
//! \brief Number of energy step
G4int nEnergySteps;
//! \brief Number of interactions
G4int nIterations;
};
//! \brief Default output file name
struct Options defaultOptions = { false, false, false, "G4LowEnergyPolarizedRayleighTest.hbook", "Iron", "polarLowEnRayleigh", 100*eV, 100*GeV, 300, 1 };
//! \brief Creates some materials
void CreateMaterials(void)
{
G4Element * H = new G4Element ("Hydrogen", "H", 1., 1.01*g/mole);
G4Element * O = new G4Element ("Oxygen", "O", 8., 16.00*g/mole);
G4Element * C = new G4Element ("Carbon", "C", 6., 12.00*g/mole);
G4Element * Cs = new G4Element ("Cesium", "Cs", 55., 132.905*g/mole);
G4Element * I = new G4Element ("Iodine", "I", 53., 126.9044*g/mole);
G4Material * Si = new G4Material("Silicon", 14., 28.055*g/mole, 2.33*g/cm3);
G4Material * Fe = new G4Material("Iron", 26., 55.85*g/mole, 7.87*g/cm3);
G4Material * Cu = new G4Material("Copper", 29., 63.55*g/mole, 8.96*g/cm3);
G4Material * W = new G4Material("Tungsten", 74., 183.85*g/mole, 19.30*g/cm3);
G4Material * Pb = new G4Material("Lead", 82., 207.19*g/mole, 11.35*g/cm3);
G4Material * U = new G4Material("Uranium", 92., 238.03*g/mole, 18.95*g/cm3);
G4Material * maO = new G4Material("Oxygen", 8., 16.00*g/mole, 1.1*g/cm3);
G4Material * water = new G4Material ("Water", 1.*g/cm3, 2);
water->AddElement(H, 2);
water->AddElement(O, 1);
G4Material* ethane = new G4Material ("Ethane", 0.4241*g/cm3, 2);
ethane->AddElement(H, 6);
ethane->AddElement(C, 2);
G4Material* csI = new G4Material ("CsI", 4.53*g/cm3, 2);
csI->AddElement(Cs, 1);
csI->AddElement(I, 1);
// This is needed to suppress some warnings. These lines can be deleted;
Si->GetTemperature();
Fe->GetTemperature();
Cu->GetTemperature();
W->GetTemperature();
Pb->GetTemperature();
U->GetTemperature();
maO->GetTemperature();
water->GetTemperature();
ethane->GetTemperature();
csI->GetTemperature();
}
//! \brief Process the options arguments
//! \param argc Number of arguments
//! \param argv Pointer to the arguments
//! \param options Structure to fill-in
void processOptions(int argc, char ** argv, struct Options * options)
{
options->meanFreePathTest = defaultOptions.meanFreePathTest;
options->postStepDoItTest = defaultOptions.meanFreePathTest;
options->randomEnergy = defaultOptions.randomEnergy;
options->outputFileName = defaultOptions.outputFileName;
options->material = defaultOptions.material;
options->process = defaultOptions.process;
options->minEnergy = defaultOptions.minEnergy;
options->maxEnergy = defaultOptions.maxEnergy;
options->nEnergySteps = defaultOptions.nEnergySteps;
options->nIterations = defaultOptions.nIterations;
int i(1);
while (i] [-m ] [-p ] [-e ] [-E ] [-s ] [-n ] " << G4endl
<< G4endl
<< "-h|-? Shows this help" << G4endl
<< "-a Enables mean free path test" << G4endl
<< "-b Enables post step do it test" << G4endl
<< "-r Energy is choosen at random within the range" << G4endl
<< "-o Set the output file name (default: \"" << defaultOptions.outputFileName << "\")" << G4endl
<< "-m Set the material (default: \"" << defaultOptions.material << "\")" << G4endl
<< "-p Set the process (default: \"" << defaultOptions.process << "\")" << G4endl
<< "-e Set the low energy range in MeV (default: " << defaultOptions.minEnergy/MeV << " MeV)" << G4endl
<< "-E Set the high energy range in MeV (default: " << defaultOptions.maxEnergy/MeV << " MeV)" << G4endl
<< "-s Set the energy range step (default: " << defaultOptions.nEnergySteps << ")"<< G4endl
<< "-n Set the number of iterations for the post step do it (default: " << defaultOptions.nIterations << ")" << G4endl;
exit(0);
break;
case 'a':
options->meanFreePathTest=true;
break;
case 'b':
options->postStepDoItTest=true;
break;
case 'r':
options->randomEnergy=true;
break;
case 'o':
i++;
if (ioutputFileName = argv[i];
break;
}
case 'm':
i++;
if (imaterial = argv[i];
break;
}
case 'p':
i++;
if (iprocess = argv[i];
break;
}
case 'e':
i++;
if (iminEnergy = std::atof(argv[i])*MeV;
if (options->minEnergy <= 0.)
{
G4cout << argv[0] << ": Energy must be > 0." << G4endl;
exit(-1);
}
break;
}
case 'E':
i++;
if (imaxEnergy = std::atof(argv[i])*MeV;
if (options->maxEnergy <= 0.)
{
G4cout << argv[0] << ": Energy must be > 0." << G4endl;
exit(-1);
}
break;
}
case 's':
i++;
if (inEnergySteps = atoi(argv[i]);
if (options->nEnergySteps <= 1)
{
G4cout << argv[0] << ": Expected at least two steps." << G4endl;
exit(-1);
}
break;
}
G4cout << argv[0] << ": Expected one more parameter in " << argv[i] << " option. Use -h option for help." << G4endl;
exit(-1);
case 'n':
i++;
if (inIterations = atoi(argv[i]);
if (options->nIterations <= 0)
{
G4cout << argv[0] << ": Expected at least one iteration." << G4endl;
exit(-1);
}
break;
}
G4cout << argv[0] << ": Expected one more parameter in " << argv[i] << " option. Use -h option for help." << G4endl;
exit(-1);
default:
G4cout << argv[0] << ": Unknown " << argv[i] << " option. Use -h option for help." << G4endl;
exit(-1);
}
}
else
{
G4cout << argv[0] << ": Bad arguments. Use -h option for help." << G4endl;
exit(-1);
}
i++;
}
if (options->minEnergy >= options->maxEnergy)
{
G4cout << argv[0] << ": Mininum energy is higher than maximum energy" << G4endl;
exit(-1);
}
G4cout << "Mean free path test: ";
if (options->meanFreePathTest)
G4cout << "On";
else
G4cout << "Off";
G4cout << G4endl << "Post step do it test: ";
if (options->postStepDoItTest)
G4cout << "On";
else
G4cout << "Off";
G4cout << G4endl << "Random energy generation: ";
if (options->randomEnergy)
G4cout << "On";
else
G4cout << "Off";
G4cout << G4endl << "Output file: " << options->outputFileName << G4endl;
G4cout << "Material: " << options->material << G4endl;
G4cout << "Process: " << options->process << G4endl;
G4cout << "Min energy: " << options->minEnergy/MeV << " MeV" << G4endl;
G4cout << "Max energy: " << options->maxEnergy/MeV << " MeV" << G4endl;
G4cout << "N energy steps: " << options->nEnergySteps << G4endl;
G4cout << "N iterations: " << options->nIterations << G4endl;
}
//! \brief Return the selected material
//! \param options Options for the material choice
//! \return The material
G4Material * GetSelectedMaterial(const struct Options & options)
{
const G4MaterialTable* theMaterialTable=G4Material::GetMaterialTable();
G4int i(G4Material::GetNumberOfMaterials());
while (i>0)
{
i--;
if ((*theMaterialTable)[i]->GetName()==options.material)
return (*theMaterialTable)[i];
}
i=G4Material::GetNumberOfMaterials();
G4cout << "Available materials are: " << G4endl;
while (i>0)
{
i--;
G4cout << (*theMaterialTable)[i]->GetName();
if (i>0)
G4cout << ", ";
}
G4cout << G4endl;
exit(-2);
return 0;
}
//! \brief Creates the geometry
//! \param options Options for the material choice
//! \return The world volume
G4PVPlacement * CreateGeometry(const struct Options & options)
{
G4Box* theFrame = new G4Box ("Frame", 1*mm, 1*mm, 1*mm);
G4LogicalVolume* logicalFrame = new G4LogicalVolume(theFrame, GetSelectedMaterial(options), "LFrame", 0, 0, 0);
G4PVPlacement * placement = new G4PVPlacement(0, G4ThreeVector(), "PFrame", logicalFrame, 0, false, 0);
G4cout << "[OK] Geometry built" << G4endl;
return placement;
}
//! \brief Get process from options
//! \param options Options for the process choice
//! \return The choosen process
G4VLowEnergyTestableDiscreteProcess * GetSelectedProcess(const struct Options & options)
{
static G4VLowEnergyTestableDiscreteProcess ** processes=0;
if (!processes)
{
processes=new G4VLowEnergyTestableDiscreteProcess *[3];
processes[0]=new G4LowEnergyPolarizedRayleigh;
processes[1]=reinterpret_cast(new G4LowEnergyRayleigh);
processes[2]=0;
}
unsigned long i(0);
while (processes[i])
{
if (processes[i]->GetProcessName()==options.process)
return processes[i];
i++;
}
G4cout << "Available processes are: " << G4endl;
i=0;
while (processes[i])
{
G4cout << processes[i]->GetProcessName();
i++;
if (processes[i])
G4cout << ", ";
}
G4cout << G4endl;
exit(-2);
return 0;
}
//! \brief Setup processes
//! \param options Options for the process choice
void SetPhysics(const struct Options & options)
{
G4ParticleDefinition * gamma(G4Gamma::GammaDefinition());
G4ParticleDefinition * electron(G4Electron::ElectronDefinition());
G4ParticleDefinition * positron(G4Positron::PositronDefinition());
G4ProductionCutsTable * cutsTable(G4ProductionCutsTable::GetProductionCutsTable());
G4ProductionCuts * cuts(cutsTable->GetDefaultProductionCuts());
G4double cutG(1*micrometer);
G4double cutE(1*micrometer);
cuts->SetProductionCut(cutG, gamma);
cuts->SetProductionCut(cutE, electron);
cuts->SetProductionCut(cutE, positron);
cutsTable->UpdateCoupleTable();
G4cout << "[OK] Cuts are defined " << G4endl;
G4VProcess * gammaProcess=GetSelectedProcess(options);
if (! (gammaProcess->IsApplicable(*gamma)))
{
G4cout<< "Process " << gammaProcess->GetProcessName() << " is not applicable to photons" << G4endl;
exit(0);
return;
}
G4cout<< "[OK] Process " << gammaProcess->GetProcessName() << " is applicable to photons" << G4endl;
G4ProcessManager * gProcessManager(new G4ProcessManager(gamma));
gamma->SetProcessManager(gProcessManager);
gProcessManager->AddDiscreteProcess(gammaProcess);
/* G4ProcessManager * eProcessManager(new G4ProcessManager(electron));
G4VProcess * theEMinusMultipleScattering(new G4MultipleScattering());
G4VProcess * theEMinusIonisation(new G4eIonisation());
G4VProcess * theEMinusBremsstrahlung(new G4eBremsstrahlung());
electron->SetProcessManager(eProcessManager);
eProcessManager->AddProcess(theEMinusMultipleScattering);
eProcessManager->AddProcess(theEMinusIonisation);
eProcessManager->AddProcess(theEMinusBremsstrahlung);
eProcessManager->SetProcessOrdering(theEMinusMultipleScattering, idxAlongStep, 1);
eProcessManager->SetProcessOrdering(theEMinusIonisation, idxAlongStep, 2);
eProcessManager->SetProcessOrdering(theEMinusMultipleScattering, idxPostStep, 1);
eProcessManager->SetProcessOrdering(theEMinusIonisation, idxPostStep, 2);
eProcessManager->SetProcessOrdering(theEMinusBremsstrahlung, idxPostStep, 3);
G4ProcessManager * pProcessManager(new G4ProcessManager(positron));
G4VProcess * theEPlusMultipleScattering(new G4MultipleScattering());
G4VProcess * theEPlusIonisation(new G4eIonisation());
G4VProcess * theEPlusBremsstrahlung(new G4eBremsstrahlung());
G4VProcess * theEPlusAnnihilation(new G4eplusAnnihilation());
positron->SetProcessManager(pProcessManager);
pProcessManager->AddProcess(theEPlusMultipleScattering);
pProcessManager->AddProcess(theEPlusIonisation);
pProcessManager->AddProcess(theEPlusBremsstrahlung);
pProcessManager->AddProcess(theEPlusAnnihilation);
pProcessManager->SetProcessOrderingToFirst(theEPlusAnnihilation, idxAtRest);
pProcessManager->SetProcessOrdering(theEPlusMultipleScattering, idxAlongStep, 1);
pProcessManager->SetProcessOrdering(theEPlusIonisation, idxAlongStep, 2);
pProcessManager->SetProcessOrdering(theEPlusMultipleScattering, idxPostStep, 1);
pProcessManager->SetProcessOrdering(theEPlusIonisation, idxPostStep, 2);
pProcessManager->SetProcessOrdering(theEPlusBremsstrahlung, idxPostStep, 3);
pProcessManager->SetProcessOrdering(theEPlusAnnihilation, idxPostStep, 4);*/
G4cout << "[OK] Processes are defined " << G4endl;
G4cout << "[OK] Building physics tables" << G4endl;
gammaProcess->BuildPhysicsTable(* gamma);
/* theEMinusMultipleScattering->BuildPhysicsTable(* electron);
theEMinusIonisation->BuildPhysicsTable(* electron);
theEMinusBremsstrahlung->BuildPhysicsTable(* electron);
theEPlusMultipleScattering->BuildPhysicsTable(* positron);
theEPlusIonisation->BuildPhysicsTable(* positron);
theEPlusBremsstrahlung->BuildPhysicsTable(* positron);
theEPlusAnnihilation->BuildPhysicsTable(* positron);*/
G4cout << "[OK] Physics tables built" << G4endl;
}
//! \brief Generates the step
//! \param options Options related to the track generation
//! \return The generated track
G4Step * GenerateStep(const struct Options & options)
{
G4ThreeVector momentumDirection;
momentumDirection.setRThetaPhi(1., std::acos(2.*G4UniformRand()-1.), twopi * G4UniformRand());
G4ThreeVector vecA(momentumDirection.orthogonal());
G4ThreeVector vecB(vecA.cross(momentumDirection));
G4double beta(twopi * G4UniformRand());
G4ThreeVector polarizationDirection(vecA * std::cos(beta)+ vecB * std::sin(beta));
G4double lnEnergyMin=std::log(options.minEnergy);
G4double lnEnergyMax=std::log(options.maxEnergy);
G4DynamicParticle * dynamicPhoton(new G4DynamicParticle(G4Gamma::Gamma(), momentumDirection, std::exp(lnEnergyMin+(lnEnergyMax-lnEnergyMin)*G4UniformRand())));
dynamicPhoton->SetPolarization(polarizationDirection.getX(), polarizationDirection.getY(), polarizationDirection.getZ());
G4Track * aTrack(new G4Track(dynamicPhoton, 0., G4ThreeVector(0., 0., 0.)));
G4Step* aStep(new G4Step());
aStep->SetTrack(aTrack);
aTrack->SetStep(aStep);
G4Material * material(GetSelectedMaterial(options));
G4ProductionCutsTable * cutsTable(G4ProductionCutsTable::GetProductionCutsTable());
const G4MaterialCutsCouple * theCouple(cutsTable->GetMaterialCutsCouple(material, cutsTable->GetDefaultProductionCuts()));
G4StepPoint * aPoint(new G4StepPoint());
aPoint->SetPosition(G4ThreeVector(0., 0., 0.));
aPoint->SetMaterial(material);
aPoint->SetMaterialCutsCouple(theCouple);
aPoint->SetSafety(10000.*cm);
aStep->SetPreStepPoint(aPoint);
return aStep;
}
void ProgressBar(G4int remainingIterations)
{
static time_t startingTime;
static time_t nextDumpTime;
static G4int startingIteration(0);
time_t now;
if (remainingIterations==0)
{
startingIteration=0;
}
else if (startingIteration==0)
{
startingTime=time(0);
nextDumpTime=startingTime+3;
startingIteration=remainingIterations;
}
else
{
now=time(0);
if (now>nextDumpTime)
{
nextDumpTime=now+10;
G4double time;
G4double perc;
time=std::floor(static_cast(now-startingTime)/static_cast(startingIteration-remainingIterations)*static_cast(remainingIterations)+0.5);
perc=std::floor(static_cast(remainingIterations)/static_cast(startingIteration)*200.+.5)/2.;
G4cout << " " << perc << " % Remaining time: " << time << " s \r";
G4cout.flush();
}
}
}
//! \brief Test the mean free path table
//! \param tupleFactory The tuple factory
//! \param options Options related to the mean free path test
void MeanFreePathTest(AIDA::ITupleFactory * tupleFactory, const struct Options & options)
{
AIDA::ITuple* iTuple = tupleFactory->create("1", "Mean Free Path Ntuple", "double k, log_k, mfp, log_mfp, cpu_time");
G4double energy(options.minEnergy);
G4double stpEnergy(std::pow(options.maxEnergy/energy, 1./static_cast(options.nEnergySteps-1)));
G4int step(options.nEnergySteps);
G4ForceCondition condition;
G4VLowEnergyTestableDiscreteProcess * process(GetSelectedProcess(options));
G4double mfp;
clock_t time;
ProgressBar(0);
while (step>0)
{
G4Step * aStep(GenerateStep(options));
G4Track * aTrack(aStep->GetTrack());
if (!options.randomEnergy)
{
aTrack->SetKineticEnergy(energy);
energy*=stpEnergy;
}
ProgressBar(step);
step--;
time=clock();
mfp=process->DumpMeanFreePath(*aTrack, 1.*mm, &condition)/cm;
time=clock()-time;
iTuple->fill(iTuple->findColumn("k"), aTrack->GetKineticEnergy()/eV);
iTuple->fill(iTuple->findColumn("log_k"), std::log10(aTrack->GetKineticEnergy()/eV));
iTuple->fill(iTuple->findColumn("mfp"), mfp);
iTuple->fill(iTuple->findColumn("log_mfp"), std::log10(mfp));
iTuple->fill(iTuple->findColumn("cpu_time"), static_cast(time)/static_cast(CLOCKS_PER_SEC));
iTuple->addRow();
delete aTrack;
delete aStep;
}
}
//! \brief Test the post step do it
//! \param tupleFactory The tuple factory
//! \param options Options related to the post step do it test
void PostStepDoItTest(AIDA::ITupleFactory * tupleFactory, const struct Options & options)
{
AIDA::ITuple* iTuple = tupleFactory->create("2", "Post Step Do It Test", "double iteration, step, in_k, log_in_k, in_theta, in_phi, in_pol_theta, in_pol_phi, e_deposit, log_e_deposit, trk_status, out_k, log_out_k, out_theta, out_phi, out_pol_theta, out_pol_phi, cpu_time");
G4double energy(options.minEnergy);
G4double stpEnergy(std::pow(options.maxEnergy/energy, 1./static_cast(options.nEnergySteps-1)));
G4int step(options.nEnergySteps);
G4VDiscreteProcess * process(GetSelectedProcess(options));
clock_t time;
ProgressBar(0);
while (step>0)
{
G4Step * aStep(GenerateStep(options));
G4Track * aTrack(aStep->GetTrack());
const G4DynamicParticle * aParticle(aTrack->GetDynamicParticle());
G4ThreeVector vector;
if (!options.randomEnergy)
{
aTrack->SetKineticEnergy(energy);
energy*=stpEnergy;
}
ProgressBar(step);
step--;
G4int iteration(options.nIterations);
while (iteration>0)
{
iteration--;
aStep->SetStepLength(1*micrometer);
iTuple->fill(iTuple->findColumn("iteration"), iteration);
iTuple->fill(iTuple->findColumn("step"), aStep->GetStepLength()/cm);
iTuple->fill(iTuple->findColumn("in_k"), aParticle->GetKineticEnergy()/eV);
iTuple->fill(iTuple->findColumn("log_in_k"), std::log10(aParticle->GetKineticEnergy()/eV));
vector=aParticle->GetMomentumDirection();
iTuple->fill(iTuple->findColumn("in_theta"), vector.theta());
iTuple->fill(iTuple->findColumn("in_phi"), vector.phi());
vector=aParticle->GetPolarization();
iTuple->fill(iTuple->findColumn("in_pol_theta"), vector.theta());
iTuple->fill(iTuple->findColumn("in_pol_phi"), vector.phi());
time=clock();
G4ParticleChange * particleChange(dynamic_cast(process->PostStepDoIt(*aTrack, *aStep)));
time=clock()-time;
aTrack->SetKineticEnergy(particleChange->GetEnergy());
aTrack->SetMomentumDirection(*particleChange->GetMomentumDirection());
aTrack->SetPolarization(*particleChange->GetPolarization());
iTuple->fill(iTuple->findColumn("e_deposit"), particleChange->GetLocalEnergyDeposit()/eV);
iTuple->fill(iTuple->findColumn("log_e_deposit"), std::log10(particleChange->GetLocalEnergyDeposit()/eV));
iTuple->fill(iTuple->findColumn("trk_status"), particleChange->GetTrackStatus());
iTuple->fill(iTuple->findColumn("out_k"), aParticle->GetKineticEnergy()/eV);
iTuple->fill(iTuple->findColumn("log_out_k"), std::log10(aParticle->GetKineticEnergy()/eV));
vector=aParticle->GetMomentumDirection();
iTuple->fill(iTuple->findColumn("out_theta"), vector.theta());
iTuple->fill(iTuple->findColumn("out_phi"), vector.phi());
vector=aParticle->GetPolarization();
iTuple->fill(iTuple->findColumn("out_pol_theta"), vector.theta());
iTuple->fill(iTuple->findColumn("out_pol_phi"), vector.phi());
iTuple->fill(iTuple->findColumn("cpu_time"), static_cast(time)/static_cast(CLOCKS_PER_SEC));
iTuple->addRow();
particleChange->Clear();
}
delete aTrack;
delete aStep;
}
}
//! \brief Main function
//! \param argc Number of arguments
//! \param argv Pointer to the arguments
//! \return The exit value
int main(int argc, char ** argv)
{
struct Options options;
processOptions(argc, argv, &options);
CreateMaterials();
GetSelectedProcess(options);
GetSelectedMaterial(options);
G4RunManager* rm = new G4RunManager();
rm->GeometryHasBeenModified();
rm->DefineWorldVolume(CreateGeometry(options));
G4cout << "[OK] World is defined " << G4endl;
SetPhysics(options);
if (!(options.meanFreePathTest || options.postStepDoItTest))
{
G4cout << "[OK] Program completed" << G4endl;
return 0;
}
// HBOOK initialization
AIDA::IAnalysisFactory * analysisFactory(AIDA_createAnalysisFactory());
AIDA::ITreeFactory * treeFactory(analysisFactory->createTreeFactory());
AIDA::ITree * tree(treeFactory->create(options.outputFileName, "hbook", false, true));
G4cout << "[OK] Tree store: " << tree->storeName() << G4endl;
AIDA::ITupleFactory * tupleFactory(analysisFactory->createTupleFactory(*tree));
// Mean free path test
if (options.meanFreePathTest)
{
G4cout << "[OK] Mean free path test started" << G4endl;
MeanFreePathTest(tupleFactory, options);
G4cout << "[OK] Mean free path test completed" << G4endl;
}
// Post step do it test
if (options.postStepDoItTest)
{
G4cout << "[OK] Post step do it test started" << G4endl;
PostStepDoItTest(tupleFactory, options);
G4cout << "[OK] Post step do it test completed" << G4endl;
}
G4cout << "[OK] Storing analysis data" << G4endl;
tree->commit();
tree->close();
G4cout << "[OK] Deleting analysis data" << G4endl;
delete tupleFactory;
delete tree;
delete treeFactory;
delete analysisFactory;
G4cout << "[OK] Program completed" << G4endl;
return 0;
}