// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4InitXscPAItest.cc,v 1.6 2006/06/29 19:54:11 gunter Exp $ // GEANT4 tag $Name: geant4-09-04-ref-00 $ // // // // // // Test routine for G4InitXscPAI class code // // History: // // 02.04.04, V. Grichine implementation based on G4PAIonisationTest #include "G4ios.hh" #include #include #include "globals.hh" #include "Randomize.hh" #include "G4Isotope.hh" #include "G4Element.hh" #include "G4Material.hh" #include "G4MaterialCutsCouple.hh" #include "G4ProductionCuts.hh" #include "G4MaterialTable.hh" #include "G4SandiaTable.hh" // #include "G4PAIonisation.hh" #include "G4PAIxSection.hh" #include "G4InitXscPAI.hh" int main() { std::ofstream outFile("InitPAIdEdx.out", std::ios::out ) ; outFile.setf( std::ios::scientific, std::ios::floatfield ); std::ofstream fileOut("InitPAIdNdx.out", std::ios::out ) ; fileOut.setf( std::ios::scientific, std::ios::floatfield ); std::ofstream outXsc("InitXsc.out", std::ios::out ) ; fileOut.setf( std::ios::scientific, std::ios::floatfield ); // std::ifstream fileRead("exp.dat", std::ios::out ) ; // fileRead.setf( std::ios::scientific, std::ios::floatfield ); std::ofstream fileWrite("exp.dat", std::ios::out ) ; fileWrite.setf( std::ios::scientific, std::ios::floatfield ); std::ofstream fileWrite1("mprrpai.dat", std::ios::out ) ; fileWrite1.setf( std::ios::scientific, std::ios::floatfield ); // Create materials G4int iz , n, nel, ncomponents ; G4double a, z, ez, density , temperature, pressure, fractionmass ; G4State state ; G4String name, symbol ; // G4Element* elH = new G4Element ("Hydrogen", "H", 1. , 1.01*g/mole); a = 14.01*g/mole; G4Element* elN = new G4Element(name="Nitrogen", symbol="N", ez=7., a); a = 16.00*g/mole; // G4Element* elO = new G4Element(name="Oxigen", symbol="O", ez=8., a); a = 12.01*g/mole; G4Element* elC = new G4Element(name="Carbon",symbol="C", ez=6., a); a = 55.85*g/mole; G4Element* elFe = new G4Element(name="Iron",symbol="Fe", ez=26., a); a = 16.00*g/mole; G4Element* elO = new G4Element(name="Oxygen",symbol="O", ez=8., a); a = 1.01*g/mole; G4Isotope* ih1 = new G4Isotope("Hydrogen",iz=1,n=1,a); a = 2.01*g/mole; G4Isotope* ih2 = new G4Isotope("Deuterium",iz=1,n=2,a); G4Element* elH = new G4Element(name="Hydrogen",symbol="H",2); elH->AddIsotope(ih1,.999); elH->AddIsotope(ih2,.001); a = 39.948*g/mole; G4Element* elAr = new G4Element(name="Argon", symbol="Ar", z=18., a); a = 131.29*g/mole; G4Element* elXe = new G4Element(name="Xenon", symbol="Xe", z=54., a); a = 19.00*g/mole; G4Element* elF = new G4Element(name="Fluorine", symbol="F", z=9., a); a = 69.723*g/mole; G4Element* elGa = new G4Element(name="Ga", symbol="Ga", z=31., a); a = 74.9216*g/mole; G4Element* elAs = new G4Element(name="As", symbol="As", z=33., a); // G4Isotope::DumpInfo(); // G4Element::DumpInfo(); // G4Material::DumpInfo(); /* // Helium as detector gas, STP density = 0.178*mg/cm3 ; a = 4.0026*g/mole ; G4Material* He = new G4Material(name="He",z=2., a, density ); // Neon as detector gas, STP density = 0.900*mg/cm3 ; a = 20.179*g/mole ; G4Material* Ne = new G4Material(name="Ne",z=10., a, density ); // Argon as detector gas density = 1.7836*mg/cm3 ; // STP G4Material* Argon = new G4Material(name="Argon" , density, ncomponents=1); Argon->AddElement(elAr, 1); // Krypton as detector gas, STP density = 3.700*mg/cm3 ; a = 83.80*g/mole ; G4Material* Kr = new G4Material(name="Kr",z=36., a, density ); */ // Xenon as detector gas, STP density = 5.858*mg/cm3 ; a = 131.29*g/mole ; G4Material* Xe = new G4Material(name="Xenon",z=54., a, density ); /* *************************************************************** // Dry air (average composition) density = 1.25053*mg/cm3 ; // STP G4Material* Nitrogen = new G4Material(name="N2" , density, ncomponents=1); Nitrogen->AddElement(elN, 2); density = 1.4289*mg/cm3 ; // STP G4Material* Oxygen = new G4Material(name="O2" , density, ncomponents=1); Oxygen->AddElement(elO, 2); density = 1.2928*mg/cm3 ; // STP G4Material* Air = new G4Material(name="Air" , density, ncomponents=3); Air->AddMaterial( Nitrogen, fractionmass = 0.7557 ) ; Air->AddMaterial( Oxygen, fractionmass = 0.2315 ) ; Air->AddMaterial( Argon, fractionmass = 0.0128 ) ; // Carbone dioxide, CO2 STP density = 1.977*mg/cm3 ; G4Material* CarbonDioxide = new G4Material(name="CO2", density, nel=2) ; CarbonDioxide->AddElement(elC,1) ; CarbonDioxide->AddElement(elO,2) ; // Metane, STP density = 0.7174*mg/cm3 ; G4Material* metane = new G4Material(name="CH4",density,nel=2) ; metane->AddElement(elC,1) ; metane->AddElement(elH,4) ; // Propane, STP density = 2.005*mg/cm3 ; G4Material* propane = new G4Material(name="C3H8",density,nel=2) ; propane->AddElement(elC,3) ; propane->AddElement(elH,8) ; // iso-Butane (methylpropane), STP density = 2.67*mg/cm3 ; G4Material* isobutane = new G4Material(name="isoC4H10",density,nel=2) ; isobutane->AddElement(elC,4) ; isobutane->AddElement(elH,10) ; // 87.5% Xe + 7.5% CH4 + 5% C3H8, 20 C, 1 atm density = 4.9196*mg/cm3 ; G4Material* XeCH4C3H8 = new G4Material(name="XeCH4C3H8" , density, ncomponents=3); XeCH4C3H8->AddMaterial( Xe, fractionmass = 0.971 ) ; XeCH4C3H8->AddMaterial( metane, fractionmass = 0.010 ) ; XeCH4C3H8->AddMaterial( propane, fractionmass = 0.019 ) ; // Propane in MWPC, 2 atm, 20 C // density = 3.758*mg/cm3 ; density = 3.736*mg/cm3 ; G4Material* propaneDet = new G4Material(name="detC3H8",density,nel=2) ; propaneDet->AddElement(elC,3) ; propaneDet->AddElement(elH,8) ; // 80% Ar + 20% CO2, STP density = 1.8223*mg/cm3 ; G4Material* Ar20CO2 = new G4Material(name="Ar20CO2" , density, ncomponents=2); Ar20CO2->AddMaterial( Argon, fractionmass = 0.783 ) ; Ar20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.217 ) ; // 93% Ar + 7% CH4, STP density = 1.709*mg/cm3 ; G4Material* Ar7CH4 = new G4Material(name="Ar7CH4" , density, ncomponents=2); Ar7CH4->AddMaterial( Argon, fractionmass = 0.971 ) ; Ar7CH4->AddMaterial( metane, fractionmass = 0.029 ) ; // 80% Xe + 20% CO2, STP density = 5.0818*mg/cm3 ; G4Material* Xe20CO2 = new G4Material(name="Xe20CO2" , density, ncomponents=2); Xe20CO2->AddMaterial( Xe, fractionmass = 0.922 ) ; Xe20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.078 ) ; // 80% Kr + 20% CO2, STP density = 3.601*mg/cm3 ; G4Material* Kr20CO2 = new G4Material(name="Kr20CO2" , density, ncomponents=2); Kr20CO2->AddMaterial( Kr, fractionmass = 0.89 ) ; Kr20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.11 ) ; // 80% He + 20% CO2, STP density = 0.5378*mg/cm3 ; G4Material* He20CO2 = new G4Material(name="He20CO2" , density, ncomponents=2); He20CO2->AddMaterial( He, fractionmass = 0.265 ) ; He20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.735 ) ; a = 26.98*g/mole; density = 2.7*g/cm3; G4Material* Al = new G4Material(name="Aluminium", z=13., a, density); // TRT Xe from ATLAS G4double TRT_Xe_density = 5.485*mg/cm3; G4Material* TRT_Xe = new G4Material(name="TRT_Xe", TRT_Xe_density, nel=1, kStateGas,293.15*kelvin,1.*atmosphere); TRT_Xe->AddElement(elXe,1); // TRT ATLAS CO2 G4double TRT_CO2_density = 1.842*mg/cm3; G4Material* TRT_CO2 = new G4Material(name="TRT_CO2", TRT_CO2_density, nel=2, kStateGas,293.15*kelvin,1.*atmosphere); TRT_CO2->AddElement(elC,1); TRT_CO2->AddElement(elO,2); // TRT ATLAS CF4 G4double TRT_CF4_density = 3.9*mg/cm3; G4Material* TRT_CF4 = new G4Material(name="TRT_CF4", TRT_CF4_density, nel=2, kStateGas,293.15*kelvin,1.*atmosphere); TRT_CF4->AddElement(elC,1); TRT_CF4->AddElement(elF,4); // ATLAS TRT straw tube gas mixture (20 C, 1 atm) G4double XeCO2CF4_density = 4.76*mg/cm3; G4Material* XeCO2CF4 = new G4Material(name="XeCO2CF4", XeCO2CF4_density, ncomponents=3, kStateGas,293.15*kelvin,1.*atmosphere); XeCO2CF4->AddMaterial(TRT_Xe,0.807); XeCO2CF4->AddMaterial(TRT_CO2,0.039); XeCO2CF4->AddMaterial(TRT_CF4,0.154); // Silicon as detector material density = 2.330*g/cm3; a = 28.09*g/mole; G4Material* Si = new G4Material(name="Silicon", z=14., a, density); // Germanium as detector material density = 5.323*g/cm3; a = 72.59*g/mole; G4Material* Ge = new G4Material(name="Ge", z=32., a, density); // GaAs detectors density = 5.32*g/cm3; G4Material* GaAs = new G4Material(name="GaAs",density, nel=2); GaAs->AddElement(elGa,1); GaAs->AddElement(elAs,1); // Diamond detectors density = 3.5*g/cm3; G4Material* Diamond = new G4Material(name="Diamond",density, nel=1); Diamond->AddElement(elC,1); a = 9.012*g/mole; density = 1.848*g/cm3; G4Material* Be = new G4Material(name="Beryllium", z=4. , a, density); density = 1.390*g/cm3; a = 39.95*g/mole; G4Material* lAr = new G4Material(name="liquidArgon", z=18., a, density); density = 19.32*g/cm3; a =196.97*g/mole; G4Material* Au = new G4Material(name="Gold" , z=79., a, density); // Carbon dioxide density = 1.977*mg/cm3; G4Material* CO2 = new G4Material(name="CO2", density, nel=2, kStateGas,273.15*kelvin,1.*atmosphere); CO2->AddElement(elC,1); CO2->AddElement(elO,2); density = 1.290*mg/cm3; // old air from elements G4Material* air = new G4Material(name="air" , density, ncomponents=2); Air->AddElement(elN, fractionmass=0.7); Air->AddElement(elO, fractionmass=0.3); density = 1.25053*mg/cm3 ; // STP a = 14.01*g/mole ; // get atomic weight !!! // a = 28.016*g/mole; G4Material* newN2 = new G4Material(name="newN2", z= 7.,a,density) ; density = 1.25053*mg/cm3 ; // STP G4Material* anotherN2 = new G4Material(name="anotherN2", density,ncomponents=2); anotherN2->AddElement(elN, 1); anotherN2->AddElement(elN, 1); density = 1.000*g/cm3; G4Material* H2O = new G4Material(name="Water", density, ncomponents=2); H2O->AddElement(elH, natoms=2); H2O->AddElement(elO, natoms=1); density = 7.870*g/cm3; a = 55.85*g/mole; G4Material* Fe = new G4Material(name="Iron" , z=26., a, density); density = 8.960*g/cm3; a = 63.55*g/mole; G4Material* Cu = new G4Material(name="Copper" , z=29., a, density); density = 11.35*g/cm3; a = 207.19*g/mole; G4Material* Pb = new G4Material(name="Lead" , z=82., a, density); // Polypropelene G4Material* CH2 = new G4Material ("Polypropelene" , 0.91*g/cm3, 2); CH2->AddElement(elH,2); CH2->AddElement(elC,1); // maylar density = 1.39*g/cm3; G4Material* Maylar = new G4Material(name="Maylar", density, nel=3); Maylar->AddElement(elO,2); Maylar->AddElement(elC,5); Maylar->AddElement(elH,4); // Kapton Dupont de Nemur (density: 1.396-1.430, get middle ) density = 1.413*g/cm3; G4Material* Kapton = new G4Material(name="Kapton", density, nel=4); Kapton->AddElement(elO,5); Kapton->AddElement(elC,22); Kapton->AddElement(elN,2); Kapton->AddElement(elH,10); // TRT_CH2 density = 0.935*g/cm3; G4Material* TRT_CH2 = new G4Material(name="TRT_CH2",density, nel=2); TRT_CH2->AddElement(elC,1); TRT_CH2->AddElement(elH,2); // Radiator density = 0.059*g/cm3; G4Material* Radiator = new G4Material(name="Radiator",density, nel=2); Radiator->AddElement(elC,1); Radiator->AddElement(elH,2); // Carbon Fiber density = 0.145*g/cm3; G4Material* CarbonFiber = new G4Material(name="CarbonFiber",density, nel=1); CarbonFiber->AddElement(elC,1); ***************************************************** */ // G4cout << *(G4Material::GetMaterialTable()) << G4endl; // // Create Sandia/PAI tables for given material // G4int i, j, k, numOfMaterials, iSan, nbOfElements, sanIndex, row ; G4double maxEnergyTransfer, kineticEnergy, dNdx, dNdxC, dNdxP, dEdx ; G4double tau, gamma, bg2, beta2, rateMass, Tmax, Tmin, Tkin; G4double eTransfer, lambda, cos2, width, rangeE ; const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable() ; numOfMaterials = theMaterialTable->size(); G4cout<<"Available materials under test : "<< G4endl<GetName() << G4endl ; outFile <GetName() << G4endl ; } G4String testName ; G4cout<<"Enter material name for test : "<>testName ; // G4Region* regGasDet = new G4Region("VertexDetector"); // regGasDet->AddRootLogicalVolume(logicAbsorber); G4ProductionCuts* cuts = new G4ProductionCuts(); cuts->SetProductionCut(10.*mm,"gamma"); cuts->SetProductionCut(1.*mm,"e-"); cuts->SetProductionCut(1.*mm,"e+"); // regGasDet->SetProductionCuts(cuts); G4cout.precision(4); for( k = 0; k < numOfMaterials; k++ ) { // if((*theMaterialTable)[k]->GetName() != testName) continue ; outFile << "Material : " <<(*theMaterialTable)[k]->GetName() << G4endl ; G4cout << "Material : " <<(*theMaterialTable)[k]->GetName() << G4endl ; nbOfElements = (*theMaterialTable)[k]->GetNumberOfElements() ; G4MaterialCutsCouple* matCC = new G4MaterialCutsCouple( (*theMaterialTable)[k], cuts); G4InitXscPAI xscPAI(matCC); G4cout<<"Sandia cof according old PAI stuff"< GetElement(iSan)->GetZ() ; } G4SandiaTable sandia(k) ; sanIndex = sandia.SandiaIntervals(thisMaterialZ,nbOfElements) ; sanIndex = sandia.SandiaMixing( thisMaterialZ , (*theMaterialTable)[k]->GetFractionVector() , nbOfElements,sanIndex) ; for(row=0;rowGetDensity() ; outFile<<" "<GetDensity() ; } G4cout<, keV/cm"<<"\t\t" <<", 1/cm"<, keV/cm"<<"\t\t" <<", 1/cm"< Tmax) { Tkin = Tmax ; } if ( Tmax <= Tmin + 0.5*eV ) { Tkin = Tmin + 0.5*eV ; } xscPAI.IntegralPAIxSection(bg2,Tkin); xscPAI.IntegralPAIdEdx(bg2,Tkin); xscPAI.IntegralCherenkov(bg2,Tkin); xscPAI.IntegralPlasmon(bg2,Tkin); G4PhysicsLogVector* dEdxVector = xscPAI.GetPAIdEdxVector(); dEdx = (*dEdxVector)(0)*cm/keV; // integral(Tmin,Tkin) of E*dN/dE G4PhysicsLogVector* vectorXsc = xscPAI.GetPAIxscVector(); dNdx = (*vectorXsc)(0)*cm ; G4PhysicsLogVector* vectorChe = xscPAI.GetPAIphotonVector(); dNdxC = (*vectorChe)(0)*cm ; G4PhysicsLogVector* vectorPla = xscPAI.GetPAIelectronVector(); dNdxP = (*vectorPla)(0)*cm ; G4PhysicsLogVector* vectorCos2 = xscPAI.GetChCosSqVector(); G4PhysicsLogVector* vectorWidth = xscPAI.GetChWidthVector(); outFile << kineticEnergy/keV<<"\t" << gamma << "\t" << Tkin/keV<<"\t" << dEdx<< "\t\t" << dNdx<< "\t" << dNdxC+dNdxP << "\t" <GetVectorLength()-2; i ++ ) { dNdx = (*vectorXsc)(i); // dEdx = (*dEdxVector)(i); dNdxC = (*vectorChe)(i); dNdxP = (*vectorPla)(i); cos2 = (*vectorCos2)(i); width = (*vectorWidth)(i); eTransfer = vectorXsc->GetLowEdgeEnergy(i); lambda = xscPAI.GetPhotonLambda(eTransfer); rangeE = 0.5*eTransfer/dEdx; G4cout<< i <<"\t"<< eTransfer/keV <<"\t"<< lambda/mm<<"\t"<< rangeE/mm <<"\t"<< cos2 <<"\t"<< width <<"\t\t"<< dNdxC/dNdx <<"\t" << dNdxP/dNdx <<"\t\t"<< dNdx*cm <<"\t"<< dNdx/((*vectorXsc)(0)) <>confirm ; if(confirm != "y" ) return 1 ; G4cout<GetName() << G4endl ; } G4cout<<"Enter material name for dE/dx-distribution : "<>testName ; G4cout<>nGamma ; G4cout<GetName() != testName) continue ; G4cout << "Material : " <<(*theMaterialTable)[k]->GetName() << G4endl<>gamma ; G4cout<>step ; G4cout<>Ebin ; G4cout<>iStatMax ; G4cout< Tmax) maxEnergyTransfer = Tmax ; G4PAIxSection xscPAIenergyLoss(k,maxEnergyTransfer,bg2) ; for( iLoss = 0 ; iLoss < 50 ; iLoss++ ) { energyLoss[iLoss] = Ebin*iLoss ; spectrum[iLoss] = 0 ; } for(iStat=0;iStat>confirm ; if(confirm != "y" ) break ; G4cout<>numberOfExpPoints ; G4cout<>deltaBin ; G4cout<>delExp[i]>>distr[i] ; delExp[i] *= keV ; G4cout<>confirm ; if(confirm != "y" ) return 1 ; G4cout<GetName() << G4endl ; } G4cout<<"Enter material name for dE/dx-distribution : "<>testName ; G4cout<GetName() != testName) continue ; G4cout << "Material : " <<(*theMaterialTable)[k]->GetName() << G4endl<>nGamma ; G4cout<>step ; G4cout<>Ebin ; G4cout<>tmRatio ; G4cout<>iStatMax ; G4cout< Tmax) maxEnergyTransfer = Tmax ; G4PAIxSection xscPAIenergyLoss(k,maxEnergyTransfer,bg2) ; for( iLoss = 0 ; iLoss < 50 ; iLoss++ ) { energyLoss[iLoss] = Ebin*iLoss ; spectrum[iLoss] = 0 ; } for(iStat=0;iStat tmRatio*iStatMax ) break ; } if(iLoss == 50) iLoss-- ; iMPLoss = iLoss ; G4double meanLoss = 0.0 ; maxSpectrum = 0 ; for(iLoss=0;iLoss maxSpectrum ) { maxSpectrum = spectrum[iLoss] ; mpLoss = energyLoss[iLoss] ; iMax = iLoss ; } } mpSum = 0. ; mpStat = 0 ; for(iLoss = iMax-5;iLoss<=iMax+5;iLoss++) { mpSum += energyLoss[iLoss]*spectrum[iLoss] ; mpStat += spectrum[iLoss] ; } mpLoss = mpSum/mpStat ; mpLoss /= keV ; meanLoss /= keV*sumStat ; meanDelta[kGamma] = meanLoss ; mpDelta[kGamma] = mpLoss ; if(kGamma > 0) { rrMP[kGamma] = mpLoss/mpDelta[0] ; G4cout<