// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4Abla.hh,v 1.1 2008/02/27 18:31:11 miheikki Exp $ // Translation of INCL4.2/ABLA V3 // Pekka Kaitaniemi, HIP (translation) // Christelle Schmidt, IPNL (fission code) // Alain Boudard, CEA (contact person INCL/ABLA) // Aatos Heikkinen, HIP (project coordination) #include "globals.hh" #include "G4AblaDataDefs.hh" #include "G4InclDataDefs.hh" /** * Class containing ABLA de-excitation code. */ class G4Abla { public: /** * Basic constructor. */ G4Abla(); /** * This constructor is used by standalone test driver and the Geant4 interface. * * @param aHazard random seeds * @param aVolant data structure for ABLA output * @param aVarNtp data structure for transfering ABLA output to Geant4 interface */ G4Abla(G4Hazard *aHazard, G4Volant *aVolant, G4VarNtp *aVarntp); /** * Constructor that is to be used only for testing purposes. * @param aHazard random seeds * @param aVolant data structure for ABLA output */ G4Abla(G4Hazard *hazard, G4Volant *volant); /** * Basic destructor. */ ~G4Abla(); /** * Set verbosity level. */ void setVerboseLevel(G4int level); /** * Main interface to the de-excitation code. * * @param nucleusA mass number of the nucleus * @param nucleusZ charge number of the nucleus * @param nucleusMass mass of the nucleus * @param excitationEnergy excitation energy of the nucleus * @param angularMomentum angular momentum of the nucleus (produced as output by INCL4) * @param recoilEnergy recoil energy of the nucleus * @param momX momentum x-component * @param momY momentum y-component * @param momZ momentum z-component * @param eventnumber number of the event */ void breakItUp(G4double nucleusA, G4double nucleusZ, G4double nucleusMass, G4double excitationEnergy, G4double angularMomentum, G4double recoilEnergy, G4double momX, G4double momY, G4double momZ, G4int eventnumber); // Evaporation public: /** * Initialize ABLA evaporation code. * */ void initEvapora(); /** * Coefficient of collective enhancement including damping * Input: z,a,bet,sig,u * Output: qr - collective enhancement factor * See junghans et al., nucl. phys. a 629 (1998) 635 * @param z charge number * @param a mass number * @param bet beta deformation * @param sig perpendicular spin cut-off factor * @param u Energy * @return Coefficient of collective enhancement */ void qrot(G4double z, G4double a, G4double bet, G4double sig, G4double u, G4double *qr); /** * Model de la goutte liquide de c. f. weizsacker. * usually an obsolete option */ void mglw(G4double a, G4double z, G4double *el); /** * Mglms */ void mglms(G4double a, G4double z, G4int refopt4, G4double *el); /** * */ // G4double spdef(G4int a, G4int z, G4int optxfis); /** * Calculation of fissility parameter */ // G4double fissility(int a,int z, int optxfis); /** * Main evaporation routine. */ void evapora(G4double zprf, G4double aprf, G4double ee, G4double jprf, G4double *zf_par, G4double *af_par, G4double *mtota_par, G4double *pleva_par, G4double *pxeva_par, G4double *pyeva_par, G4int *ff_par, G4int *inttype_par, G4int *inum_par); /** * Calculation of particle emission probabilities. */ void direct(G4double zprf,G4double a, G4double ee, G4double jprf, G4double *probp_par, G4double *probn_par, G4double *proba_par, G4double *probf_par, G4double *ptotl_par, G4double *sn_par, G4double *sbp_par, G4double *sba_par, G4double *ecn_par, G4double *ecp_par,G4double *eca_par, G4double *bp_par, G4double *ba_par, G4int inttype, G4int inum, G4int itest); /** * Level density parameters. */ void densniv(G4double a, G4double z, G4double ee, G4double esous, G4double *dens, G4double bshell, G4double bs, G4double bk, G4double *temp, G4int optshp, G4int optcol, G4double defbet); /** * This subroutine calculates the fission barriers * of the liquid-drop model of Myers and Swiatecki (1967). * Analytic parameterization of Dahlinger 1982 * replaces tables. Barrier heights from Myers and Swiatecki */ G4double bfms67(G4double zms, G4double ams); /** * This subroutine calculates the ordinary legendre polynomials of * order 0 to n-1 of argument x and stores them in the vector pl. * They are calculated by recursion relation from the first two * polynomials. * Written by A.J.Sierk LANL t-9 February, 1984 */ void lpoly(G4double x, G4int n, G4double pl[]); /** * This function will calculate the liquid-drop nuclear mass for spheri * configuration according to the preprint NUCLEAR GROUND-STATE * MASSES and DEFORMATIONS by P. Mo"ller et al. from August 16, 1993 p. * All constants are taken from this publication for consistency. */ G4double eflmac(G4int ia, G4int iz, G4int flag, G4int optshp); /** * Procedure for calculating the pairing correction to the binding * energy of a specific nucleus. */ void appariem(G4double a, G4double z, G4double *del); /** * PROCEDURE FOR CALCULATING THE PARITY OF THE NUMBER N. * RETURNS -1 IF N IS ODD AND +1 IF N IS EVEN */ void parite(G4double n, G4double *par); /** * RISE TIME IN WHICH THE FISSION WIDTH HAS REACHED * 90 PERCENT OF ITS FINAL VALUE */ G4double tau(G4double bet, G4double homega, G4double ef, G4double t); /** * KRAMERS FAKTOR - REDUCTION OF THE FISSION PROBABILITY * INDEPENDENT OF EXCITATION ENERGY */ G4double cram(G4double bet, G4double homega); /** * CALCULATION OF THE SURFACE BS OR CURVATURE BK OF A NUCLEUS * RELATIVE TO THE SPHERICAL CONFIGURATION * BASED ON MYERS, DROPLET MODEL FOR ARBITRARY SHAPES */ G4double bipol(int iflag, G4double y); /** * THIS SUBROUTINE RETURNS THE BARRIER HEIGHT BFIS, THE * GROUND-STATE ENERGY SEGS, IN MEV, AND THE ANGULAR MOMENTUM * AT WHICH THE FISSION BARRIER DISAPPEARS, LMAX, IN UNITS OF * H-BAR, WHEN CALLED WITH INTEGER AGUMENTS IZ, THE ATOMIC * NUMBER, IA, THE ATOMIC MASS NUMBER, AND IL, THE ANGULAR * MOMENTUM IN UNITS OF H-BAR. (PLANCK'S CONSTANT DIVIDED BY * 2*PI). */ void barfit(G4int iz, G4int ia, G4int il, G4double *sbfis, G4double *segs, G4double *selmax); /** * TIRAGE ALEATOIRE DANS UNE EXPONENTIELLLE : Y=EXP(-X/T) */ G4double expohaz(G4int k, G4double T); /** * DISTRIBUTION DE MAXWELL */ G4double fd(G4double E); /** *FONCTION INTEGRALE DE FD(E) */ G4double f(G4double E); /** * tirage aleatoire dans une maxwellienne */ G4double fmaxhaz(G4double T); /** * */ G4double pace2(G4double a, G4double z); /** * */ void guet(G4double *x_par, G4double *z_par, G4double *find_par); // Fission public: /** * */ G4double spdef(G4int a, G4int z, G4int optxfis); /** * */ G4double fissility(G4int a, G4int z, G4int optxfis); // void evapora(G4double zprf, G4double aprf, G4double ee, G4double jprf, // G4double *zf_par, G4double *af_par, G4double *mtota_par, // G4double *pleva_par, G4double *pxeva_par); // G4double bfms67(G4double zms, G4double ams); // void lpoly(G4double x, G4int n, G4double pl[]); // G4double expohaz(G4int k, G4double T); // G4double fd(G4double E); // G4double f(G4double E); // G4double fmaxhaz(G4double k, G4double T); void even_odd(G4double r_origin,G4double r_even_odd,G4int &i_out); G4double umass(G4double z,G4double n,G4double beta); G4double ecoul(G4double z1,G4double n1,G4double beta1,G4double z2,G4double n2,G4double beta2,G4double d); void fissionDistri(G4double &a,G4double &z,G4double &e, G4double &a1,G4double &z1,G4double &e1,G4double &v1, G4double &a2,G4double &z2,G4double &e2,G4double &v2); void standardRandom(G4double *rndm, G4long *seed); G4double haz(G4int k); G4double gausshaz(int k, double xmoy, double sig); public: // Coordinate system transformations: void lorab(G4double gam, G4double eta, G4double ein, G4double pin[], G4double *eout, G4double pout[]); void translab(G4double gamrem, G4double etrem, G4double csrem[4], G4int nopart, G4int ndec); void translabpf(G4double masse1, G4double t1, G4double p1, G4double ctet1, G4double phi1, G4double gamrem, G4double etrem, G4double R[][4], G4double *plab1, G4double *gam1, G4double *eta1, G4double csdir[]); void rotab(G4double R[4][4], G4double pin[4], G4double pout[4]); // Utils G4int min(G4int a, G4int b); G4double min(G4double a, G4double b); G4int max(G4int a, G4int b); G4double max(G4double a, G4double b); G4int nint(G4double number); G4int secnds(G4int x); G4int mod(G4int a, G4int b); G4double dmod(G4double a, G4double b); G4double dint(G4double a); G4int idint(G4double a); G4int idnint(G4double value); G4double utilabs(G4double a); G4double dmin1(G4double a, G4double b, G4double c); private: G4int verboseLevel; G4int ilast; G4Pace *pace; G4Hazard *hazard; G4Ald *ald; G4Ablamain *ablamain; G4Emdpar *emdpar; G4Eenuc *eenuc; G4Ec2sub *ec2sub; G4Ecld *ecld; G4Fb *fb; G4Fiss *fiss; G4Opt *opt; G4Volant *volant; G4VarNtp *varntp; };