// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // Hadronic Process: Nuclear De-excitations // by V. Lara #ifndef G4FermiPhaseSpaceDecay_hh #define G4FermiPhaseSpaceDecay_hh #include "G4LorentzVector.hh" #include "G4ParticleMomentum.hh" #include "Randomize.hh" #include "G4Pow.hh" #include #include #include class G4FermiPhaseSpaceDecay { public: G4FermiPhaseSpaceDecay(); ~G4FermiPhaseSpaceDecay(); inline std::vector * Decay(const G4double, const std::vector&) const; private: G4FermiPhaseSpaceDecay(const G4FermiPhaseSpaceDecay&); const G4FermiPhaseSpaceDecay & operator=(const G4FermiPhaseSpaceDecay &); G4bool operator==(const G4FermiPhaseSpaceDecay&); G4bool operator!=(const G4FermiPhaseSpaceDecay&); inline G4double PtwoBody(G4double E, G4double P1, G4double P2) const; G4ParticleMomentum IsotropicVector(const G4double Magnitude = 1.0) const; inline G4double BetaKopylov(const G4int) const; std::vector * TwoBodyDecay(const G4double, const std::vector&) const; std::vector * NBodyDecay(const G4double, const std::vector&) const; std::vector * KopylovNBodyDecay(const G4double, const std::vector&) const; }; inline G4double G4FermiPhaseSpaceDecay::PtwoBody(G4double E, G4double P1, G4double P2) const { G4double res = -1.0; G4double P = (E+P1+P2)*(E+P1-P2)*(E-P1+P2)*(E-P1-P2)/(4.0*E*E); if (P>0.0) { res = std::sqrt(P); } return res; } inline std::vector * G4FermiPhaseSpaceDecay:: Decay(const G4double parent_mass, const std::vector& fragment_masses) const { return KopylovNBodyDecay(parent_mass,fragment_masses); } inline G4double G4FermiPhaseSpaceDecay::BetaKopylov(const G4int K) const { //JMQ 250410 old algorithm has been commented // Notice that alpha > beta always // const G4double beta = 1.5; // G4double alpha = 1.5*(K-1); // G4double Y1 = CLHEP::RandGamma::shoot(alpha,1); // G4double Y2 = CLHEP::RandGamma::shoot(beta,1); // return Y1/(Y1+Y2); G4Pow* g4pow = G4Pow::GetInstance(); G4int N = 3*K - 5; G4double xN = G4double(N); G4double F; //G4double Fmax = std::pow((3.*K-5.)/(3.*K-4.),(3.*K-5.)/2.)*std::sqrt(1-((3.*K-5.)/(3.*K-4.))); // VI variant G4double Fmax = std::sqrt(g4pow->powZ(N, xN/(xN + 1))/(xN + 1)); G4double chi; do { chi = G4UniformRand(); F = std::sqrt(g4pow->powZ(N, chi)*(1-chi)); } while ( Fmax*G4UniformRand() > F); return chi; } #endif