// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4GEMChannel.hh,v 1.7 2010/11/18 16:21:17 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-04-ref-00 $ // // Hadronic Process: Nuclear De-excitations // by V. Lara (Oct 1998) // #ifndef G4GEMChannel_h #define G4GEMChannel_h 1 #include "G4VEvaporationChannel.hh" #include "G4GEMProbability.hh" #include "G4VLevelDensityParameter.hh" #include "G4VCoulombBarrier.hh" #include "G4EvaporationLevelDensityParameter.hh" #include "G4NucleiProperties.hh" #include "Randomize.hh" #include "G4ParticleTable.hh" #include "G4IonTable.hh" //#define debug class G4Pow; class G4GEMChannel : public G4VEvaporationChannel { public: G4GEMChannel(const G4int theA, const G4int theZ, const G4String & aName, G4GEMProbability * aEmissionStrategy, G4VCoulombBarrier * aCoulombBarrier); // destructor virtual ~G4GEMChannel(); void Initialize(const G4Fragment & fragment); G4FragmentVector * BreakUp(const G4Fragment & theNucleus); inline void SetLevelDensityParameter(G4VLevelDensityParameter * aLevelDensity) { if (MyOwnLevelDensity) { delete theLevelDensityPtr; } theLevelDensityPtr = aLevelDensity; MyOwnLevelDensity = false; } inline G4double GetEmissionProbability(void) const { return EmissionProbability; } inline G4double GetMaximalKineticEnergy(void) const { return MaximalKineticEnergy; } private: // Calculate Binding Energy for separate fragment from nucleus G4double CalcBindingEnergy(G4int anA, G4int aZ); // Calculate maximal kinetic energy that can be carried by fragment (in MeV) G4double CalcMaximalKineticEnergy(G4double U); // Samples fragment kinetic energy. G4double CalcKineticEnergy(const G4Fragment & fragment); // This has to be removed and put in Random Generator G4ThreeVector IsotropicVector(G4double Magnitude = 1.0); G4GEMChannel(const G4GEMChannel & right); const G4GEMChannel & operator=(const G4GEMChannel & right); G4bool operator==(const G4GEMChannel & right) const; G4bool operator!=(const G4GEMChannel & right) const; protected: G4GEMChannel(); // Data Members ************ private: // This data member define the channel. // They are intializated at object creation (constructor) time. // Atomic Number G4int A; // Charge G4int Z; G4double EvaporatedMass; G4double ResidualMass; G4Pow* fG4pow; // For evaporation probability calcualtion G4GEMProbability * theEvaporationProbabilityPtr; // For Level Density calculation G4bool MyOwnLevelDensity; G4VLevelDensityParameter * theLevelDensityPtr; // For Coulomb Barrier calculation G4VCoulombBarrier * theCoulombBarrierPtr; G4double CoulombBarrier; //--------------------------------------------------- // These values depend on the nucleus that is being evaporated. // They are calculated through the Initialize method which takes as parameters // the atomic number, charge and excitation energy of nucleus. // Residual Atomic Number G4int ResidualA; // Residual Charge G4int ResidualZ; // Emission Probability G4double EmissionProbability; // Maximal Kinetic Energy that can be carried by fragment G4double MaximalKineticEnergy; }; #endif