// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4Incl.cc,v 1.37 2010/12/15 07:41:31 gunter Exp $ // Translation of INCL4.2/ABLA V3 // Pekka Kaitaniemi, HIP (translation) // Christelle Schmidt, IPNL (fission code) // Alain Boudard, CEA (contact person INCL/ABLA) // Aatos Heikkinen, HIP (project coordination) #include "G4Incl.hh" #include #include "Randomize.hh" #include "G4InclRandomNumbers.hh" #include "G4Ranecu.hh" G4Incl::G4Incl() { verboseLevel = 0; // Set functions to be used for integration routine. wsaxFunction = 0; derivWsaxFunction = 1; dmhoFunction = 2; derivMhoFunction = 3; derivGausFunction = 4; densFunction = 5; // Default: no Fermi break-up useFermiBreakup = false; // Default: no projectile spectators useProjSpect = false; randomGenerator = new G4InclGeant4Random(); // randomGenerator = new G4Ranecu(); clearState(); } G4Incl::G4Incl(G4Hazard *aHazard, G4Dton *aDton, G4Saxw *aSaxw, G4Ws *aWs) { verboseLevel = 0; // Default: no Fermi break-up useFermiBreakup = false; // Default: no projectile spectators useProjSpect = false; // Set functions to be used for integration routine. wsaxFunction = 0; derivWsaxFunction = 1; dmhoFunction = 2; derivMhoFunction = 3; derivGausFunction = 4; densFunction = 5; // Set input data for testing. hazard = aHazard; dton = aDton; saxw = aSaxw; ws = aWs; // randomGenerator = new G4Ranecu(); randomGenerator = new G4InclGeant4Random(); clearState(); } G4Incl::G4Incl(G4Hazard *aHazard, G4InclInput *aCalincl, G4Ws *aWs, G4Mat *aMat, G4VarNtp *aVarntp) { verboseLevel = 0; // Default: no Fermi break-up useFermiBreakup = false; // Default: no projectile spectators useProjSpect = false; // Set functions to be used for integration routine. wsaxFunction = 0; derivWsaxFunction = 1; dmhoFunction = 2; derivMhoFunction = 3; derivGausFunction = 4; densFunction = 5; // Set input data for INCL run. hazard = aHazard; calincl = aCalincl; ws = aWs; mat = aMat; varntp = aVarntp; randomGenerator = new G4InclGeant4Random(); // randomGenerator = new G4Ranecu(); light_gaus_nuc = new G4LightGausNuc(); light_nuc = new G4LightNuc(); spl2 = new G4Spl2(); saxw = new G4Saxw(); dton = new G4Dton(); bl1 = new G4Bl1(); bl2 = new G4Bl2(); bl3 = new G4Bl3(); bl4 = new G4Bl4(); bl5 = new G4Bl5(); bl6 = new G4Bl6(); bl8 = new G4Bl8(); bl9 = new G4Bl9(); bl10 = new G4Bl10(); kindstruct = new G4Kind(); bev = new G4Bev(); paul = new G4Paul(); varavat = new G4VarAvat(); varavat->kveux = 0; be = new G4VBe(); ps = new G4InclProjSpect(); fermi = new G4InclFermi(); qvp = new G4QuadvectProjo(); volant = new G4Volant(); volant->iv = 0; evaporationResult = new G4VarNtp(); evaporationResult->ntrack = -1; // Initialize evaporation. abla = new G4Abla(hazard, volant, evaporationResult); abla->initEvapora(); theLogger = 0; clearState(); } G4Incl::~G4Incl() { delete be; delete ps; delete fermi; delete qvp; delete randomGenerator; delete light_gaus_nuc; delete light_nuc; delete spl2; delete saxw; delete dton; delete bl1; delete bl2; delete bl3; delete bl4; delete bl5; delete bl6; delete bl8; delete bl9; delete bl10; delete kindstruct; delete bev; delete paul; delete varavat; delete abla; delete evaporationResult; delete volant; } void G4Incl::setUseFermiBreakUp(G4bool useIt) { useFermiBreakup = useIt; } void G4Incl::setUseProjectileSpectators(G4bool useIt) { useProjSpect = useIt; } /** *Methods for debugging. */ void G4Incl::dumpParticles() { G4int ia = bl3->ia1 + bl3->ia2; G4cout <<"Nucleons: (number of nucleons = " << ia << ")" << G4endl; for(G4int i = 0; i <= ia; i++) { G4cout <<"x1(" << i << ") = " << bl3->x1[i] << G4endl; G4cout <<"x2(" << i << ") = " << bl3->x2[i] << G4endl; G4cout <<"x3(" << i << ") = " << bl3->x3[i] << G4endl; G4cout <<"p1(" << i << ") = " << bl1->p1[i] << G4endl; G4cout <<"p2(" << i << ") = " << bl1->p2[i] << G4endl; G4cout <<"p3(" << i << ") = " << bl1->p3[i] << G4endl; G4cout <<"eps(" << i << ") = " << bl1->eps[i] << G4endl; } } G4double G4Incl::energyTest(G4int i) { return am(bl1->p1[i]+bl1->p1[i],bl1->p2[i]+bl1->p2[i],bl1->p3[i]+bl1->p3[i],bl1->eps[i]+bl1->eps[i]); } void G4Incl::dumpBl5(std::ofstream& dumpOut) { dumpOut <<"Dumping G4Bl5:" << G4endl; for(G4int i = 0; i < 300; i++) { dumpOut <<"i = " << i << " nesc[i] = " << bl5->nesc[i] << G4endl; } } void G4Incl::dumpSaxw(std::ofstream& dumpOut) { dumpOut << "Dumping G4Saxw" << G4endl; dumpOut << "saxw->k = " << saxw->k << G4endl; dumpOut << "saxw->n = " << saxw->n << G4endl; dumpOut << "saxw->imat = " << saxw->imat << G4endl; for(G4int i = 0; i < 30; i++) { dumpOut <<"i = " << i << " x = " << saxw->x[i][0] << " y = " << saxw->y[i][0] << " s = " << saxw->s[i][0] << G4endl; } } void G4Incl::dumpBl1(std::ofstream& dumpOut) { dumpOut <<"Dumping Bl1: " << G4endl; dumpOut <<"bl1->ta = " << bl1->ta << G4endl; for(G4int i = 0; i <= bl2->k; i++) { dumpOut <<"i = " << i; dumpOut <<" bl1->p1 = " << bl1->p1[i] << " bl1->p2 = " << bl1->p2[i] <<" bl1->p3 = " << bl1->p3[i]; dumpOut <<" bl1->eps = " << bl1->eps[i]; dumpOut <<" bl1->ind1 = " << bl1->ind1[i] <<" bl1->ind2 = " << bl1->ind2[i] << G4endl; } dumpOut <<"End of Bl1 dump." << G4endl << G4endl; } void G4Incl::dumpBl2(std::ofstream& dumpOut) { dumpOut <<"Dumping Bl2: bl2->k = " << bl2->k << G4endl; for(G4int i = 0; i <= bl2->k; i++) { dumpOut <<"i = " << i; dumpOut <<" bl2->ind " << bl2->ind[i] << " bl2->jnd = " << bl2->jnd[i] <<" bl2->crois = " << bl2->crois[i] << G4endl; } dumpOut <<"End of Bl2 dump." << G4endl << G4endl;} void G4Incl::dumpBl3(std::ofstream& dumpOut) { dumpOut <<"Dumping Bl3:" << G4endl; dumpOut <<"r1 = " << bl3->r1 << " r2 = " << bl3->r2 << G4endl; dumpOut <<"ia1 = " << bl3->ia1 << " ia2 = " << bl3->ia2 << G4endl; dumpOut <<"rab2 = " << bl3->rab2 << G4endl; for(G4int i = 0; i <= bl2->k; i++) { dumpOut <<"i = " << i; dumpOut <<" bl3->x1 = " << bl3->x1[i] << " bl3->x2 = " << bl3->x2[i] <<" bl3->x3 = " << bl3->x3[i] << G4endl; } dumpOut <<"End of Bl2 dump." << G4endl << G4endl; } // End debug functions void G4Incl::setVerboseLevel(G4int level) { verboseLevel = level; if(verboseLevel > G4InclUtils::silent) { G4cout <<";; G4Incl: Setting verbose level to " << verboseLevel << G4endl; } abla->setVerboseLevel(level); } G4int G4Incl::getVerboseLevel() { return verboseLevel; } void G4Incl::setDtonData(G4Dton *newDton) { dton = newDton; } void G4Incl::setWsData(G4Ws *newWs) { ws = newWs; } void G4Incl::setHazardData(G4Hazard *newHazard) { hazard = newHazard; } void G4Incl::setSaxwData(G4Saxw *newSaxw) { saxw = newSaxw; } void G4Incl::setSpl2Data(G4Spl2 *newSpl2) { spl2 = newSpl2; } void G4Incl::setInput(G4InclInput *newCalincl) { calincl = newCalincl; } void G4Incl::setMatData(G4Mat *newMat) { mat = newMat; } void G4Incl::setLightNucData(G4LightNuc *newLightNuc) { light_nuc = newLightNuc; } void G4Incl::setLightGausNucData(G4LightGausNuc *newLightGausNuc) { light_gaus_nuc = newLightGausNuc; } void G4Incl::setBl1Data(G4Bl1 *newBl1) { bl1 = newBl1; } void G4Incl::setBl2Data(G4Bl2 *newBl2) { bl2 = newBl2; } void G4Incl::setBl3Data(G4Bl3 *newBl3) { bl3 = newBl3; } void G4Incl::setBl4Data(G4Bl4 *newBl4) { bl4 = newBl4; } void G4Incl::setBl5Data(G4Bl5 *newBl5) { bl5 = newBl5; } void G4Incl::setBl6Data(G4Bl6 *newBl6) { bl6 = newBl6; } void G4Incl::setBl8Data(G4Bl8 *newBl8) { bl8 = newBl8; } void G4Incl::setBl9Data(G4Bl9 *newBl9) { bl9 = newBl9; } void G4Incl::setBl10Data(G4Bl10 *newBl10) { bl10 = newBl10; } void G4Incl::setKindData(G4Kind *newKind) { kindstruct = newKind; } /** * INCL main routines for event processing. */ void G4Incl::processEventIncl(G4InclInput *input) { //G4cout <<"Starting event " << eventnumber << G4endl; if(input == 0) { G4cerr <<"G4Incl fatal error: NULL pointer passed as input!" << G4endl; return; } calincl = input; const G4double uma = 931.4942; const G4double melec = 0.511; const G4double fmp = 938.2796; G4double pcorem = 0.0; G4double pxrem = 0.0; G4double pyrem = 0.0; G4double pzrem = 0.0; G4double ap = 0.0, zp = 0.0, mprojo = 0.0, pbeam = 0.0; varntp->clear(); if(calincl->bulletType() == -12) { be->ia_be = std::abs(calincl->bulletType()); be->iz_be = 6; } else if(calincl->bulletType() == -666) { be->iz_be = calincl->extendedProjectileZ(); be->ia_be = calincl->extendedProjectileA(); } if(calincl->isExtendedProjectile() == false && calincl->bulletType() < -max_a_proj) { // if(calincl->bulletType() < -max_a_proj) { G4cout <<"max a of composite projectile is: " << max_a_proj << G4endl; exit(0); } if(calincl->bulletType() < 0) { // calincl->bulletType() = std::floor(calincl->bulletType() + 0.1); WTF??? be->pms_be=100.; G4int i_tabled=0; if(be->iz_be == 3 && be->ia_be == 6) { be->rms_be=2.56; be->bind_be=32.0; i_tabled=1; } else if(be->iz_be == 3 && be->ia_be == 7) { // TODO: Check the values! be->rms_be=2.56; be->bind_be=32.0; i_tabled=1; } else if(be->iz_be == 3 && be->ia_be == 8) { be->rms_be=2.40; be->bind_be=39.25; i_tabled=1; } else if(be->iz_be == 4 && be->ia_be == 7) { be->rms_be=2.51; be->bind_be=58.17; i_tabled=1; } else if(be->iz_be == 4 && be->ia_be == 9) { be->rms_be=2.51; be->bind_be=58.17; i_tabled=1; } else if(be->iz_be == 4 && be->ia_be == 10) { be->rms_be=2.45; be->bind_be=64.75; i_tabled=1; } else if(be->iz_be == 5 && be->ia_be == 10) { be->rms_be=2.45; be->bind_be=64.75; i_tabled=1; } else if(be->iz_be == 5 && be->ia_be == 11) { be->rms_be=2.40; be->bind_be=76.21; i_tabled=1; } else if(be->iz_be == 6 && be->ia_be == 9) { // TODO: Check the values! be->rms_be=2.44; be->bind_be=92.17; i_tabled=1; } else if(be->iz_be == 6 && be->ia_be == 10) { // TODO: Check the values! be->rms_be=2.44; be->bind_be=92.17; i_tabled=1; } else if(be->iz_be == 6 && be->ia_be == 11) { // TODO: Check the values! be->rms_be=2.44; be->bind_be=92.17; i_tabled=1; } else if(be->iz_be == 6 && calincl->bulletType() == -12) { // Special Carbon case G4cout <<"Carbon 12 (special) selected." << G4endl; be->rms_be=2.44; be->bind_be=92.17; i_tabled=1; } else if(be->iz_be == 6 && be->ia_be == 12) { be->rms_be=2.44; be->bind_be=92.17; i_tabled=1; } else if(be->iz_be == 7 && be->ia_be == 16) { be->rms_be=2.73; be->bind_be=127.62; i_tabled=1; } else { G4cout <<"Warning: No rms and binding for projectile ion A = " << be->ia_be << " Z = " << be->iz_be << G4endl; be->rms_be=2.44; be->bind_be=92.17; G4cout <<"Warning: Using probably bad values rms = " << be->rms_be << " binding = " << be->bind_be << G4endl; i_tabled=1; } if(i_tabled == 0) { G4cout <<"This heavy ion (a,z)= " << be->ia_be << " " << be->iz_be << " is not defined as beam in INCL" << G4endl; exit(0); } // G4cout <<"z projectile, rms_r, rms_p (gaussian model)" << be->iz_be << " " << be->rms_be << " " << be->pms_be << G4endl; // G4cout <<"binding energy (mev):" << be->bind_be << G4endl; // G4cout <<"fermi-breakup dresner below a=" << calincl->f[11] << G4endl; } // G4cout <<"Target Mass and Charge: " << calincl->targetA() << " " << calincl->targetZ() << G4endl; // calincl->f[10] = 0; // No clusters if(calincl->bulletType() == -12) { // C12 special case mprojo=fmp*std::abs(calincl->bulletType()) - be->bind_be; pbeam=std::sqrt(calincl->bulletE()*(calincl->bulletE()+2.*mprojo)); ap=std::abs(calincl->bulletType()); zp=be->iz_be; } else if(calincl->bulletType() == -666) { // Generic extended projectile mprojo=fmp*be->ia_be - be->bind_be; pbeam=std::sqrt(calincl->bulletE()*(calincl->bulletE()+2.*mprojo)); ap=be->ia_be; zp=be->iz_be; } // pi+ if(calincl->bulletType() == 3) { mprojo = 139.56995; ap = 0.0; zp = 1.0; } // pi0 if(calincl->bulletType() == 4) { mprojo = 134.9764; ap = 0.0; zp = 0.0; } // pi- if(calincl->bulletType() == 5) { mprojo = 139.56995; ap = 0.0; zp = -1.0; } // coulomb en entree seulement pour les particules ci-dessous // proton if(calincl->bulletType() == 1) { mprojo = 938.27231; ap = 1.0; zp = 1.0; } // neutron if(calincl->bulletType() == 2) { mprojo = 939.56563; ap = 1.0; zp = 0.0; } // deuteron if(calincl->bulletType() == 6) { mprojo = 1875.61276; ap = 2.0; zp = 1.0; } // triton if(calincl->bulletType() == 7) { mprojo = 2808.95; ap = 3.0; zp = 1.0; } // He3 if(calincl->bulletType() == 8) { mprojo = 2808.42; ap = 3.0; zp = 2.0; } // Alpha if(calincl->bulletType() == 9) { mprojo = 3727.42; ap = 4.0; zp = 2.0; } // Carbon if(calincl->bulletType() == -12) { mprojo = 6.0*938.27231 + 6.0*939.56563; ap = 12.0; zp = 6.0; } pbeam = std::sqrt(calincl->bulletE()*(calincl->bulletE() + 2.0*mprojo)); G4double at = calincl->targetA(); G4int ibert = 1; G4int nopart = 0; G4int izrem = 0; G4int iarem = 0; G4double esrem = 0.0; G4double erecrem = 0.0; G4double berem = 0.0; G4double garem = 0.0; G4double bimpac = 0.0; G4int jrem = 0; G4double xjrem = 0.0, yjrem = 0.0, zjrem = 0.0; G4double alrem = 0.0; // Coulomb barrier G4double probaTrans = 0.0; G4double rndm = 0.0; if((calincl->bulletType() == 1) || (calincl->bulletType() >= 6)) { // probaTrans = coulombTransm(calincl->bulletE(),apro,zpro,calincl->targetA(),calincl->targetZ()); probaTrans = coulombTransm(calincl->bulletE(),ap,zp,calincl->targetA(),calincl->targetZ()); standardRandom(&rndm, &(hazard->ial)); if(rndm <= (1.0 - probaTrans)) { varntp->ntrack = -1; return; } } // G4cout <<"Before PNU:" << G4endl; // randomGenerator->printSeeds(); // Call the actual INCL routine: pnu(&ibert, &nopart,&izrem,&iarem,&esrem,&erecrem,&alrem,&berem,&garem,&bimpac, &jrem, &xjrem, &yjrem, &zjrem); // G4cout <<"After PNU:" << G4endl; // randomGenerator->printSeeds(); G4double mrem = int(zjrem/197.328); // CHECK if (mrem > jrem) mrem=jrem; if (mrem < -jrem) mrem=-jrem; // nopart=1; // kind[0]=1; // ep[0]=799.835; // alpha[0]=0.08716; // beta[0]=0.; // gam[0]=0.99619; // izrem=82; // iarem=208; // esrem=200.; // erecrem=0.18870; // alrem=-0.47101; // berem=0.; // garem=0.88213; // bimpac=2.; forceAbsor(&nopart, &iarem, &izrem, &esrem, &erecrem, &alrem, &berem, &garem, &jrem); G4double aprf = double(iarem); // mass number of the prefragment G4double jprf = 0.0; // angular momentum of the prefragment // Mean angular momentum of prefragment jprf = 0.165 * std::pow(at,(2.0/3.0)) * aprf*(at - aprf)/(at - 1.0); if (jprf < 0) { jprf = 0.0; } // check m.de jong, ignatyuk, schmidt nuc.phys a 613, pg442, 7th line jprf = std::sqrt(2*jprf); jprf = jrem; varntp->jremn = jrem; // jrem copie dans le ntuple G4double numpi = 0; // compteurs de pions, neutrons protons G4double multn = 0; G4double multp = 0; // ecriture dans le ntuple des particules de cascade (sauf remnant) varntp->ntrack = nopart; // nombre de particules pour ce tir if(varntp->ntrack >= VARNTPSIZE) { if(verboseLevel > 2) { G4cout <<"G4Incl error: Output data structure not big enough." << G4endl; } } varntp->massini = iarem; varntp->mzini = izrem; varntp->exini = esrem; varntp->bimpact = bimpac; // three ways to compute the mass of the remnant: // -from the output of the cascade and the canonic mass // -from energy balance (input - all emitted energies) // -following the approximations of the cugnon code (esrem...) G4double mcorem = mprojo + calincl->bulletE() + abla->pace2(double(calincl->targetA()),double(calincl->targetZ())) + calincl->targetA()*uma - calincl->targetZ()*melec; G4double pxbil = 0.0; G4double pybil = 0.0; G4double pzbil = 0.0; if(nopart > -1) { // Fill the projectile spectator variables varntp->masp = ps->a_projspec; varntp->mzsp = ps->z_projspec; varntp->exsp = ps->ex_projspec; varntp->spectatorP1 = ps->p1_projspec; varntp->spectatorP2 = ps->p2_projspec; varntp->spectatorP3 = ps->p3_projspec; varntp->spectatorT = ps->t_projspec; for(G4int j = 0; j <= nopart; j++) { if(ep[j] < 0.0) { // Workaround to avoid negative energies (and taking std::sqrt of a negative number). G4cout <<"G4Incl: Not registering particle with energy: " << ep[j] << G4endl; continue; } if(kind[j] == 0) continue; // Empty particle rows are sometimes produced by lurking indexing problems. We can simply skip those "bad" entries... if(gam[j] > CLHEP::pi) { if(verboseLevel > 2) { G4cout <<"G4Incl: Just avoided floating point exception by using an ugly hack..." << G4endl; } continue; // Avoid floating point exception } varntp->itypcasc[j] = 1; // Particle was produced by the cascade // Spectators of composite projectiles (7/2006, AB) // (kind is negative in that case) if(kind[j] <= 0) { // Particle is a projectile spectator that comes directly from the cascade kind[j] *= -1; varntp->itypcasc[j]=-1; // G4cout <<"Spectator registered!" << G4endl; // continue; } // kind(): 1=proton, 2=neutron, 3=pi+, 4=pi0, 5=pi - if(kind[j] == 1) { varntp->avv[j] = 1; varntp->zvv[j] = 1; varntp->plab[j] = std::sqrt(ep[j]*(ep[j]+1876.5592)); // cugnon multp = multp + 1; mcorem = mcorem - ep[j] - 938.27231; if(verboseLevel > 3) { G4cout <<"G4Incl: Proton produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 2) { varntp->avv[j] = 1; varntp->zvv[j] = 0; varntp->plab[j] = std::sqrt(ep[j]*(ep[j]+1876.5592)); // cugnon multn = multn + 1; mcorem = mcorem - ep[j] - 939.56563; if(verboseLevel > 3) { G4cout <<"G4Incl: Neutron produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 3) { varntp->avv[j] = -1; varntp->zvv[j] = 1; varntp->plab[j] = std::sqrt(ep[j]*(ep[j]+276.0)); // cugnon numpi = numpi + 1; mcorem = mcorem - ep[j] - 139.56995; if(verboseLevel > 3) { G4cout <<"G4Incl: Pi+ produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 4) { varntp->avv[j] = -1; varntp->zvv[j] = 0; varntp->plab[j] = std::sqrt(ep[j]*(ep[j]+276.0)); // cugnon numpi = numpi + 1; mcorem = mcorem - ep[j] - 134.9764; if(verboseLevel > 3) { G4cout <<"G4Incl: Pi0 produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 5) { varntp->avv[j] = -1; varntp->zvv[j] = -1; varntp->plab[j] = std::sqrt(ep[j]*(ep[j]+276.0)); // cugnon numpi = numpi + 1; mcorem = mcorem - ep[j] - 139.56995; if(verboseLevel > 3) { G4cout <<"G4Incl: Pi+ produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 6) { varntp->avv[j] = 2; varntp->zvv[j] = 1; varntp->plab[j] = std::sqrt(ep[j]*(ep[j] + 2.0*1874.34)); // cugnon numpi = numpi + 1; mcorem = mcorem - ep[j] - 2806.359; if(verboseLevel > 3) { G4cout <<"G4Incl: Deuteron produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 7) { varntp->avv[j] = 3; varntp->zvv[j] = 1; varntp->plab[j] = std::sqrt(ep[j]*(ep[j] + 2.0*2806.359)); // cugnon numpi = numpi + 1; mcorem = mcorem - ep[j] - 2806.359; if(verboseLevel > 3) { G4cout <<"G4Incl: Triton produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 8) { varntp->avv[j] = 3; varntp->zvv[j] = 2; varntp->plab[j] = std::sqrt(ep[j]*(ep[j] + 2.0*2807.119)); // cugnon numpi = numpi + 1; mcorem = mcorem - ep[j] - 2807.119; if(verboseLevel > 3) { G4cout <<"G4Incl: He3 produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 9) { varntp->avv[j] = 4; varntp->zvv[j] = 2; varntp->plab[j] = std::sqrt(ep[j]*(ep[j] + 2.0*3724.818)); // cugnon numpi = numpi + 1; mcorem = mcorem - ep[j] - 3724.818; if(verboseLevel > 3) { G4cout <<"G4Incl: He3 produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } varntp->enerj[j] = ep[j]; varntp->tetlab[j] = 180.0*std::acos(gam[j])/3.141592654; varntp->philab[j] = 180.0*std::atan2(beta[j],alpha[j])/3.141592654; pxbil = pxbil + varntp->plab[j]*alpha[j]; pybil = pybil + varntp->plab[j]*beta[j]; pzbil = pzbil + varntp->plab[j]*gam[j]; if(verboseLevel > 3) { G4cout <<"Momentum: " << varntp->plab[j] << G4endl; G4cout <<"Theta: " << varntp->tetlab[j] << G4endl; G4cout <<"Phi: " << varntp->philab[j] << G4endl; } } // calcul de la masse (impulsion) du remnant coherente avec la conservation d'energie: pcorem = std::sqrt(erecrem*(erecrem + 2.0 * 938.2796 * iarem)); // cugnon mcorem = 938.2796 * iarem; // cugnon varntp->pcorem = pcorem; varntp->mcorem = mcorem; // Note: Il faut negliger l'energie d'excitation (ESREM) pour que le bilan // d'impulsion soit correct a la sortie de la cascade.....et prendre la // masse MCOREM comme ci-dessus (fausse de ~1GeV par rapport aux tables...) pxrem = pcorem * alrem; pyrem = pcorem * berem; pzrem = pcorem * garem; varntp->pxrem = pxrem; varntp->pyrem = pyrem; varntp->pzrem = pzrem; pxbil = pxbil + pxrem; pybil = pybil + pyrem; pzbil = pzbil + pzrem; // If on purpose, add here the spectator nuclei: if(calincl->bulletType() < 0 && ps->a_projspec != 0) { pxbil=pxbil+ps->p1_projspec; pybil=pybil+ps->p2_projspec; pzbil=pzbil+ps->p3_projspec; } if((std::fabs(pzbil - pbeam) > 5.0) || (std::sqrt(std::pow(pxbil,2) + std::pow(pybil,2)) >= 3.0)) { if(verboseLevel > 3) { G4cout <<"Bad momentum conservation after INCL:" << G4endl; G4cout <<"delta Pz = " << std::fabs(pzbil - pbeam) << G4endl; G4cout <<" Pt = " << std::sqrt(std::pow(pxbil, 2) + std::pow(pybil, 2)) << G4endl; } } volant->iv = 0; // init du compteur des part evaporees varntp->kfis = 0; //drapeau de fission copie dans le ntuple varntp->estfis = 0.0; varntp->izfis = 0; varntp->iafis = 0; // on recopie le remnant dans le ntuple varntp->ntrack = varntp->ntrack + 1; varntp->massini = iarem; varntp->mzini = izrem; varntp->exini = esrem; varntp->pxrem = pxrem; varntp->pyrem = pyrem; varntp->pzrem = pzrem; varntp->mcorem = mcorem; varntp->erecrem = pcorem; varntp->erecrem = erecrem; #ifdef G4INCLDEBUG theLogger->fillHistogram1D("bimpact", varntp->bimpact); #endif #ifdef G4INCLDEBUG theLogger->fillHistogram1D("mzini", varntp->mzini); #endif } if(nopart == -2) { varntp->ntrack = -2; //FIX: Error flag to remove events containing unphysical events (Ekin > Ebullet). evaporationResult->ntrack = -2; //FIX: Error flag to remove events containing unphysical events (Ekin > Ebullet). } else if(nopart == -1) { varntp->ntrack = -1; evaporationResult->ntrack = -1; } if(verboseLevel > 2) { G4cout << __FILE__ << ":" << __LINE__ << "Dump varntp after combining: " << G4endl; varntp->dump(); } } void G4Incl::processEventInclAbla(G4InclInput *input, G4int eventnumber) { //G4cout <<"Starting event " << eventnumber << G4endl; if(input == 0) { G4cerr <<"G4Incl fatal error: NULL pointer passed as input!" << G4endl; return; } calincl = input; const G4double uma = 931.4942; const G4double melec = 0.511; const G4double fmp = 938.2796; G4double pcorem = 0.0; G4double pxrem = 0.0; G4double pyrem = 0.0; G4double pzrem = 0.0; G4double ap = 0.0, zp = 0.0, mprojo = 0.0, pbeam = 0.0; varntp->clear(); if(calincl->bulletType() == -12) { be->ia_be = std::abs(calincl->bulletType()); be->iz_be = 6; } else if(calincl->bulletType() == -666) { be->iz_be = calincl->extendedProjectileZ(); be->ia_be = calincl->extendedProjectileA(); } if(calincl->isExtendedProjectile() == false && calincl->bulletType() < -max_a_proj) { // if(calincl->bulletType() < -max_a_proj) { G4cout <<"max a of composite projectile is: " << max_a_proj << G4endl; exit(0); } if(calincl->bulletType() < 0) { // calincl->bulletType() = std::floor(calincl->bulletType() + 0.1); WTF??? be->pms_be=100.; G4int i_tabled=0; if(be->iz_be == 3 && be->ia_be == 6) { be->rms_be=2.56; be->bind_be=32.0; i_tabled=1; } else if(be->iz_be == 3 && be->ia_be == 7) { // TODO: Check the values! be->rms_be=2.56; be->bind_be=32.0; i_tabled=1; } else if(be->iz_be == 3 && be->ia_be == 8) { be->rms_be=2.40; be->bind_be=39.25; i_tabled=1; } else if(be->iz_be == 4 && be->ia_be == 7) { be->rms_be=2.51; be->bind_be=58.17; i_tabled=1; } else if(be->iz_be == 4 && be->ia_be == 9) { be->rms_be=2.51; be->bind_be=58.17; i_tabled=1; } else if(be->iz_be == 4 && be->ia_be == 10) { be->rms_be=2.45; be->bind_be=64.75; i_tabled=1; } else if(be->iz_be == 5 && be->ia_be == 10) { be->rms_be=2.45; be->bind_be=64.75; i_tabled=1; } else if(be->iz_be == 5 && be->ia_be == 11) { be->rms_be=2.40; be->bind_be=76.21; i_tabled=1; } else if(be->iz_be == 6 && be->ia_be == 9) { // TODO: Check the values! be->rms_be=2.44; be->bind_be=92.17; i_tabled=1; } else if(be->iz_be == 6 && be->ia_be == 10) { // TODO: Check the values! be->rms_be=2.44; be->bind_be=92.17; i_tabled=1; } else if(be->iz_be == 6 && be->ia_be == 11) { // TODO: Check the values! be->rms_be=2.44; be->bind_be=92.17; i_tabled=1; } else if(be->iz_be == 6 && calincl->bulletType() == -12) { // Special Carbon case G4cout <<"Carbon 12 (special) selected." << G4endl; be->rms_be=2.44; be->bind_be=92.17; i_tabled=1; } else if(be->iz_be == 6 && be->ia_be == 12) { be->rms_be=2.44; be->bind_be=92.17; i_tabled=1; } else if(be->iz_be == 7 && be->ia_be == 16) { be->rms_be=2.73; be->bind_be=127.62; i_tabled=1; } else { G4cout <<"Warning: No rms and binding for projectile ion A = " << be->ia_be << " Z = " << be->iz_be << G4endl; be->rms_be=2.44; be->bind_be=92.17; G4cout <<"Warning: Using probably bad values rms = " << be->rms_be << " binding = " << be->bind_be << G4endl; i_tabled=1; } if(i_tabled == 0) { G4cout <<"This heavy ion (a,z)= " << be->ia_be << " " << be->iz_be << " is not defined as beam in INCL" << G4endl; exit(0); } // G4cout <<"z projectile, rms_r, rms_p (gaussian model)" << be->iz_be << " " << be->rms_be << " " << be->pms_be << G4endl; // G4cout <<"binding energy (mev):" << be->bind_be << G4endl; // G4cout <<"fermi-breakup dresner below a=" << calincl->f[11] << G4endl; } // G4cout <<"Target Mass and Charge: " << calincl->targetA() << " " << calincl->targetZ() << G4endl; // calincl->f[10] = 0; // No clusters if(calincl->bulletType() == -12) { // C12 special case mprojo=fmp*std::abs(calincl->bulletType()) - be->bind_be; pbeam=std::sqrt(calincl->bulletE()*(calincl->bulletE()+2.*mprojo)); ap=std::abs(calincl->bulletType()); zp=be->iz_be; } else if(calincl->bulletType() == -666) { // Generic extended projectile mprojo=fmp*be->ia_be - be->bind_be; pbeam=std::sqrt(calincl->bulletE()*(calincl->bulletE()+2.*mprojo)); ap=be->ia_be; zp=be->iz_be; } // pi+ if(calincl->bulletType() == 3) { mprojo = 139.56995; ap = 0.0; zp = 1.0; } // pi0 if(calincl->bulletType() == 4) { mprojo = 134.9764; ap = 0.0; zp = 0.0; } // pi- if(calincl->bulletType() == 5) { mprojo = 139.56995; ap = 0.0; zp = -1.0; } // coulomb en entree seulement pour les particules ci-dessous // proton if(calincl->bulletType() == 1) { mprojo = 938.27231; ap = 1.0; zp = 1.0; } // neutron if(calincl->bulletType() == 2) { mprojo = 939.56563; ap = 1.0; zp = 0.0; } // deuteron if(calincl->bulletType() == 6) { mprojo = 1875.61276; ap = 2.0; zp = 1.0; } // triton if(calincl->bulletType() == 7) { mprojo = 2808.95; ap = 3.0; zp = 1.0; } // He3 if(calincl->bulletType() == 8) { mprojo = 2808.42; ap = 3.0; zp = 2.0; } // Alpha if(calincl->bulletType() == 9) { mprojo = 3727.42; ap = 4.0; zp = 2.0; } // Carbon if(calincl->bulletType() == -12) { mprojo = 6.0*938.27231 + 6.0*939.56563; ap = 12.0; zp = 6.0; } pbeam = std::sqrt(calincl->bulletE()*(calincl->bulletE() + 2.0*mprojo)); G4double at = calincl->targetA(); G4int ibert = 1; G4int nopart = 0; G4int izrem = 0; G4int iarem = 0; G4double esrem = 0.0; G4double erecrem = 0.0; G4double berem = 0.0; G4double garem = 0.0; G4double bimpac = 0.0; G4int jrem = 0; G4double xjrem = 0.0, yjrem = 0.0, zjrem = 0.0; G4double alrem = 0.0; // Coulomb barrier G4double probaTrans = 0.0; G4double rndm = 0.0; if((calincl->bulletType() == 1) || (calincl->bulletType() >= 6)) { // probaTrans = coulombTransm(calincl->bulletE(),apro,zpro,calincl->targetA(),calincl->targetZ()); probaTrans = coulombTransm(calincl->bulletE(),ap,zp,calincl->targetA(),calincl->targetZ()); standardRandom(&rndm, &(hazard->ial)); if(rndm <= (1.0 - probaTrans)) { varntp->ntrack = -1; return; } } // G4cout <<"Before PNU:" << G4endl; // randomGenerator->printSeeds(); // Call the actual INCL routine: pnu(&ibert, &nopart,&izrem,&iarem,&esrem,&erecrem,&alrem,&berem,&garem,&bimpac, &jrem, &xjrem, &yjrem, &zjrem); // G4cout <<"After PNU:" << G4endl; // randomGenerator->printSeeds(); G4double mrem = int(zjrem/197.328); // CHECK if (mrem > jrem) mrem=jrem; if (mrem < -jrem) mrem=-jrem; // nopart=1; // kind[0]=1; // ep[0]=799.835; // alpha[0]=0.08716; // beta[0]=0.; // gam[0]=0.99619; // izrem=82; // iarem=208; // esrem=200.; // erecrem=0.18870; // alrem=-0.47101; // berem=0.; // garem=0.88213; // bimpac=2.; forceAbsor(&nopart, &iarem, &izrem, &esrem, &erecrem, &alrem, &berem, &garem, &jrem); G4double aprf = double(iarem); // mass number of the prefragment G4double jprf = 0.0; // angular momentum of the prefragment // Mean angular momentum of prefragment jprf = 0.165 * std::pow(at,(2.0/3.0)) * aprf*(at - aprf)/(at - 1.0); if (jprf < 0) { jprf = 0.0; } // check m.de jong, ignatyuk, schmidt nuc.phys a 613, pg442, 7th line jprf = std::sqrt(2*jprf); jprf = jrem; varntp->jremn = jrem; // jrem copie dans le ntuple G4double numpi = 0; // compteurs de pions, neutrons protons G4double multn = 0; G4double multp = 0; // ecriture dans le ntuple des particules de cascade (sauf remnant) varntp->ntrack = nopart; // nombre de particules pour ce tir if(varntp->ntrack >= VARNTPSIZE) { if(verboseLevel > 2) { G4cout <<"G4Incl error: Output data structure not big enough." << G4endl; } } varntp->massini = iarem; varntp->mzini = izrem; varntp->exini = esrem; varntp->bimpact = bimpac; // three ways to compute the mass of the remnant: // -from the output of the cascade and the canonic mass // -from energy balance (input - all emitted energies) // -following the approximations of the cugnon code (esrem...) G4double mcorem = mprojo + calincl->bulletE() + abla->pace2(double(calincl->targetA()),double(calincl->targetZ())) + calincl->targetA()*uma - calincl->targetZ()*melec; G4double pxbil = 0.0; G4double pybil = 0.0; G4double pzbil = 0.0; if(nopart > -1) { // Fill the projectile spectator variables varntp->masp = ps->a_projspec; varntp->mzsp = ps->z_projspec; varntp->exsp = ps->ex_projspec; varntp->spectatorP1 = ps->p1_projspec; varntp->spectatorP2 = ps->p2_projspec; varntp->spectatorP3 = ps->p3_projspec; varntp->spectatorT = ps->t_projspec; for(G4int j = 0; j <= nopart; j++) { if(ep[j] < 0.0) { // Workaround to avoid negative energies (and taking std::sqrt of a negative number). G4cout <<"G4Incl: Not registering particle with energy: " << ep[j] << G4endl; continue; } if(kind[j] == 0) continue; // Empty particle rows are sometimes produced by lurking indexing problems. We can simply skip those "bad" entries... if(gam[j] > CLHEP::pi) { if(verboseLevel > 2) { G4cout <<"G4Incl: Just avoided floating point exception by using an ugly hack..." << G4endl; } continue; // Avoid floating point exception } varntp->itypcasc[j] = 1; // Particle was produced by the cascade // Spectators of composite projectiles (7/2006, AB) // (kind is negative in that case) if(kind[j] <= 0) { // Particle is a projectile spectator that comes directly from the cascade kind[j] *= -1; varntp->itypcasc[j]=-1; // G4cout <<"Spectator registered!" << G4endl; // continue; } // kind(): 1=proton, 2=neutron, 3=pi+, 4=pi0, 5=pi - if(kind[j] == 1) { varntp->avv[j] = 1; varntp->zvv[j] = 1; varntp->plab[j] = std::sqrt(ep[j]*(ep[j]+1876.5592)); // cugnon multp = multp + 1; mcorem = mcorem - ep[j] - 938.27231; if(verboseLevel > 3) { G4cout <<"G4Incl: Proton produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 2) { varntp->avv[j] = 1; varntp->zvv[j] = 0; varntp->plab[j] = std::sqrt(ep[j]*(ep[j]+1876.5592)); // cugnon multn = multn + 1; mcorem = mcorem - ep[j] - 939.56563; if(verboseLevel > 3) { G4cout <<"G4Incl: Neutron produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 3) { varntp->avv[j] = -1; varntp->zvv[j] = 1; varntp->plab[j] = std::sqrt(ep[j]*(ep[j]+276.0)); // cugnon numpi = numpi + 1; mcorem = mcorem - ep[j] - 139.56995; if(verboseLevel > 3) { G4cout <<"G4Incl: Pi+ produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 4) { varntp->avv[j] = -1; varntp->zvv[j] = 0; varntp->plab[j] = std::sqrt(ep[j]*(ep[j]+276.0)); // cugnon numpi = numpi + 1; mcorem = mcorem - ep[j] - 134.9764; if(verboseLevel > 3) { G4cout <<"G4Incl: Pi0 produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 5) { varntp->avv[j] = -1; varntp->zvv[j] = -1; varntp->plab[j] = std::sqrt(ep[j]*(ep[j]+276.0)); // cugnon numpi = numpi + 1; mcorem = mcorem - ep[j] - 139.56995; if(verboseLevel > 3) { G4cout <<"G4Incl: Pi+ produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 6) { varntp->avv[j] = 2; varntp->zvv[j] = 1; varntp->plab[j] = std::sqrt(ep[j]*(ep[j] + 2.0*1874.34)); // cugnon numpi = numpi + 1; mcorem = mcorem - ep[j] - 2806.359; if(verboseLevel > 3) { G4cout <<"G4Incl: Deuteron produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 7) { varntp->avv[j] = 3; varntp->zvv[j] = 1; varntp->plab[j] = std::sqrt(ep[j]*(ep[j] + 2.0*2806.359)); // cugnon numpi = numpi + 1; mcorem = mcorem - ep[j] - 2806.359; if(verboseLevel > 3) { G4cout <<"G4Incl: Triton produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 8) { varntp->avv[j] = 3; varntp->zvv[j] = 2; varntp->plab[j] = std::sqrt(ep[j]*(ep[j] + 2.0*2807.119)); // cugnon numpi = numpi + 1; mcorem = mcorem - ep[j] - 2807.119; if(verboseLevel > 3) { G4cout <<"G4Incl: He3 produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } if(kind[j] == 9) { varntp->avv[j] = 4; varntp->zvv[j] = 2; varntp->plab[j] = std::sqrt(ep[j]*(ep[j] + 2.0*3724.818)); // cugnon numpi = numpi + 1; mcorem = mcorem - ep[j] - 3724.818; if(verboseLevel > 3) { G4cout <<"G4Incl: He3 produced! " << G4endl; G4cout <<"G4Incl: Momentum: "<< varntp->plab[j] << G4endl; } } varntp->enerj[j] = ep[j]; varntp->tetlab[j] = 180.0*std::acos(gam[j])/3.141592654; varntp->philab[j] = 180.0*std::atan2(beta[j],alpha[j])/3.141592654; pxbil = pxbil + varntp->plab[j]*alpha[j]; pybil = pybil + varntp->plab[j]*beta[j]; pzbil = pzbil + varntp->plab[j]*gam[j]; if(verboseLevel > 3) { G4cout <<"Momentum: " << varntp->plab[j] << G4endl; G4cout <<"Theta: " << varntp->tetlab[j] << G4endl; G4cout <<"Phi: " << varntp->philab[j] << G4endl; } } // calcul de la masse (impulsion) du remnant coherente avec la conservation d'energie: pcorem = std::sqrt(erecrem*(erecrem + 2.0 * 938.2796 * iarem)); // cugnon mcorem = 938.2796 * iarem; // cugnon varntp->pcorem = pcorem; varntp->mcorem = mcorem; // Note: Il faut negliger l'energie d'excitation (ESREM) pour que le bilan // d'impulsion soit correct a la sortie de la cascade.....et prendre la // masse MCOREM comme ci-dessus (fausse de ~1GeV par rapport aux tables...) pxrem = pcorem * alrem; pyrem = pcorem * berem; pzrem = pcorem * garem; varntp->pxrem = pxrem; varntp->pyrem = pyrem; varntp->pzrem = pzrem; pxbil = pxbil + pxrem; pybil = pybil + pyrem; pzbil = pzbil + pzrem; // If on purpose, add here the spectator nuclei: if(calincl->bulletType() < 0 && ps->a_projspec != 0) { pxbil=pxbil+ps->p1_projspec; pybil=pybil+ps->p2_projspec; pzbil=pzbil+ps->p3_projspec; } if((std::fabs(pzbil - pbeam) > 5.0) || (std::sqrt(std::pow(pxbil,2) + std::pow(pybil,2)) >= 3.0)) { if(verboseLevel > 3) { G4cout <<"Bad momentum conservation after INCL:" << G4endl; G4cout <<"delta Pz = " << std::fabs(pzbil - pbeam) << G4endl; G4cout <<" Pt = " << std::sqrt(std::pow(pxbil, 2) + std::pow(pybil, 2)) << G4endl; } } volant->iv = 0; // init du compteur des part evaporees varntp->kfis = 0; //drapeau de fission copie dans le ntuple varntp->estfis = 0.0; varntp->izfis = 0; varntp->iafis = 0; // on recopie le remnant dans le ntuple varntp->ntrack = varntp->ntrack + 1; varntp->massini = iarem; varntp->mzini = izrem; varntp->exini = esrem; varntp->pxrem = pxrem; varntp->pyrem = pyrem; varntp->pzrem = pzrem; varntp->mcorem = mcorem; varntp->erecrem = pcorem; varntp->erecrem = erecrem; if(verboseLevel > 2) { G4cout << __FILE__ << ":" << __LINE__ << "Dump varntp after cascade: " << G4endl; varntp->dump(); } // Maximum remnant for Geant4 Fermi break-up: A = 17, Z = 8 if(varntp->massini < 17 && varntp->exini < 1000 && varntp->massini > 0 && varntp->mzini > 0 && useFermiBreakup) { // Choose between Fermi break-up and ABLA varntp->needsFermiBreakup = true; } else { varntp->needsFermiBreakup = false; // Evaporation/fission: evaporationResult->ntrack = 0; abla->breakItUp(G4int(varntp->massini), G4int(varntp->mzini), mcorem, varntp->exini, varntp->jremn, erecrem, pxrem, pyrem, pzrem, eventnumber); if(verboseLevel > 2) { G4cout << __FILE__ << ":" << __LINE__ << "Dump evaporationResult after evaporation: " << G4endl; evaporationResult->dump(); } for(G4int evaporatedParticle = 0; evaporatedParticle < evaporationResult->ntrack; evaporatedParticle++) { if(evaporationResult->avv[evaporatedParticle] == 0 && evaporationResult->zvv[evaporatedParticle] == 0) { //Fix: Skip "empty" particles with A = 0 and Z = 0 // continue; } varntp->kfis = evaporationResult->kfis; varntp->itypcasc[varntp->ntrack] = evaporationResult->itypcasc[evaporatedParticle]; varntp->avv[varntp->ntrack] = evaporationResult->avv[evaporatedParticle]; varntp->zvv[varntp->ntrack]= evaporationResult->zvv[evaporatedParticle]; varntp->plab[varntp->ntrack] = evaporationResult->plab[evaporatedParticle]; varntp->enerj[varntp->ntrack] = evaporationResult->enerj[evaporatedParticle]; varntp->tetlab[varntp->ntrack] = evaporationResult->tetlab[evaporatedParticle]; varntp->philab[varntp->ntrack] = evaporationResult->philab[evaporatedParticle]; varntp->ntrack++; if(verboseLevel > 3) { G4cout <<"G4Incl: Returning evaporation result" << G4endl; G4cout <<"G4Incl: A = " << varntp->avv[varntp->ntrack] << " Z = " << varntp->zvv[varntp->ntrack] << G4endl; G4cout <<"Energy: " << varntp->enerj[varntp->ntrack] << G4endl; G4cout <<"Momentum: " << varntp->plab[varntp->ntrack] << G4endl; G4cout <<"Theta: " << varntp->tetlab[varntp->ntrack] << G4endl; G4cout <<"Phi: " << varntp->philab[varntp->ntrack] << G4endl; } } if(verboseLevel > 2) { G4cout <<"G4Incl: ntrack = " << varntp->ntrack << G4endl; G4cout <<"G4Incl: Done extracting..." << G4endl; } } if(calincl->bulletType() < 0 && useProjSpect && !useFermiBreakup) { // If we use projectile spectators for carbon but no fermi breakup // Evaporation/fission: evaporationResult->ntrack = 0; // G4cout <<"Warning: Using ABLA to de-excite projectile spectator..." << G4endl; abla->breakItUp(G4int(varntp->masp), G4int(varntp->mzsp), ps->m_projspec, varntp->exsp, 0.0, ps->t_projspec, ps->p1_projspec, ps->p1_projspec, ps->p1_projspec, eventnumber); if(verboseLevel > 2) { G4cout << __FILE__ << ":" << __LINE__ << "Dump evaporationResult after evaporation: " << G4endl; evaporationResult->dump(); } for(G4int evaporatedParticle = 0; evaporatedParticle < evaporationResult->ntrack; evaporatedParticle++) { if(evaporationResult->avv[evaporatedParticle] == 0 && evaporationResult->zvv[evaporatedParticle] == 0) { //Fix: Skip "empty" particles with A = 0 and Z = 0 } varntp->kfis = evaporationResult->kfis; varntp->itypcasc[varntp->ntrack] = evaporationResult->itypcasc[evaporatedParticle]; varntp->avv[varntp->ntrack] = evaporationResult->avv[evaporatedParticle]; varntp->zvv[varntp->ntrack]= evaporationResult->zvv[evaporatedParticle]; varntp->plab[varntp->ntrack] = evaporationResult->plab[evaporatedParticle]; varntp->enerj[varntp->ntrack] = evaporationResult->enerj[evaporatedParticle]; varntp->tetlab[varntp->ntrack] = evaporationResult->tetlab[evaporatedParticle]; varntp->philab[varntp->ntrack] = evaporationResult->philab[evaporatedParticle]; varntp->ntrack++; if(verboseLevel > 3) { G4cout <<"G4Incl: Returning evaporation result" << G4endl; G4cout <<"G4Incl: A = " << varntp->avv[varntp->ntrack] << " Z = " << varntp->zvv[varntp->ntrack] << G4endl; G4cout <<"Energy: " << varntp->enerj[varntp->ntrack] << G4endl; G4cout <<"Momentum: " << varntp->plab[varntp->ntrack] << G4endl; G4cout <<"Theta: " << varntp->tetlab[varntp->ntrack] << G4endl; G4cout <<"Phi: " << varntp->philab[varntp->ntrack] << G4endl; } } } #ifdef G4INCLDEBUG theLogger->fillHistogram1D("bimpact", varntp->bimpact); #endif #ifdef G4INCLDEBUG theLogger->fillHistogram1D("mzini", varntp->mzini); #endif } if(nopart == -2) { varntp->ntrack = -2; //FIX: Error flag to remove events containing unphysical events (Ekin > Ebullet). evaporationResult->ntrack = -2; //FIX: Error flag to remove events containing unphysical events (Ekin > Ebullet). } else if(nopart == -1) { varntp->ntrack = -1; evaporationResult->ntrack = -1; } if(verboseLevel > 2) { G4cout << __FILE__ << ":" << __LINE__ << "Dump varntp after combining: " << G4endl; varntp->dump(); } } // Initialization routines void G4Incl::initIncl(G4bool initRandomSeed) { // Subroutine for initialisation of intranuclear cascade incl // // this will read some specific parameters for incl, // prepare the saxon-wood density for each nucleus // compute the deuteron momentum space density from paris pot. // print some global informations // // input: should contain z and a for nbmat nucleus considered in this problem // // input: should contain a seed (ial, odd and of 5 digits) to start the work. G4double xrand = 0.0; G4long ialdep = 0; G4int imat = 0; G4int iamat = 0, izmat = 0; // for the 19 secondary seeds of hazard: G4int nbtirhaz[IGRAINESIZE] = {38,82,76,18,39,31,41,59,26,54, 14,84,13,15,91,89,10,6,52}; // specific parameters for incl: // espace de phases test (r et p) pour pauli: // valeur recommandee par j.c. v-test=0.592 h**3: G4double rbl = 2.; // valeur pour avoir v-test=2 h**3 (avec pbl=200) rbl = 3.1848; // preparation of 19 other seeds (can also be initialized from outside): if(initRandomSeed) { ialdep=hazard->ial; for(G4int i = 0; i < IGRAINESIZE; i++) { for(G4int j = 0; j < nbtirhaz[i]; j++) { standardRandom(&xrand,&(hazard->ial)); } // Zero is not accepted as random seed! do { standardRandom(&xrand,&(hazard->ial)); } while(xrand == 0); xrand = xrand * 100000; while(xrand < 10000) { xrand = xrand * 10; } hazard->igraine[i] = (int) xrand; if(hazard->igraine[i] == ((hazard->igraine[i] / 2) * 2)) { hazard->igraine[i] = hazard->igraine[i] + 1; } } hazard->ial = ialdep; } // calculation with realistic nuclear density (saxon-wood) if (ws->nosurf <= 0) { // prepare nucleus density for nbmat nucleus defined in struct mat if(mat->nbmat >= 500) { if(verboseLevel > 2) { G4cout <<"You need " << mat->nbmat << " nuclei in your problem. The maximum number of nuclei is 500 " << G4endl; } return; } for(G4int i = 0; i < mat->nbmat; i++) { imat = i; izmat = int(mat->zmat[i]); iamat = int(mat->amat[i]); initMaterial(izmat, iamat, imat); } } // deuteron density in momentum space: densDeut(); } void G4Incl::initMaterial(G4int izmat, G4int iamat, G4int imat) { G4double res_dws = 0.0; G4double fnor = 0.0; G4double rcour = 0.0, geom = 0.0; G4int nbr = 0; G4double step = 0.0, f_r = 0.0; // rms espace r, espace p, fermi momentum and energy for light gauss nuc. const G4double datarms1t[LGNSIZE] = {0.0, 0.0, 0.0, 0.0, 0.0, 2.10, 1.80, 1.80, 1.63}; const G4double datapf1t[LGNSIZE] = {0.0, 0.0, 0.0, 0.0, 0.0, 77.0, 110.0, 110.0, 153.0}; for(G4int i = 0; i < LGNSIZE; i++) { light_gaus_nuc->rms1t[i] = datarms1t[i]; light_gaus_nuc->pf1t[i] = datapf1t[i]; } // fermi 2 param from a=19 to 28, modified harm oscil a=6 to 18 // (h. de vries et al. at. data and nuc. data tab. 36 (1987) 495) const G4double datarln[LNSIZE] = {0.0,0.0,0.0,0.0,0.0,0.334,0.327,0.479,0.631,0.838, 0.811,1.07,1.403,1.335,1.25,1.544,1.498,1.513, 2.58,2.77, 2.775,2.78,2.88,2.98,3.22,3.03,2.84, 3.14,0.0,0.0}; const G4double dataaln[LNSIZE] = {0.0,0.0,0.0,0.0,0.0,1.78,1.77,1.77,1.77,1.71, 1.69,1.69,1.635,1.730,1.81,1.833,1.798, 1.841,0.567,0.571, 0.560,0.549,0.550,0.551, 0.580,0.575,0.569,0.537,0.0,0.0}; for(G4int i = 0; i < LNSIZE; i++) { light_nuc->r[i] = datarln[i]; light_nuc->a[i] = dataaln[i]; } if(verboseLevel > 3) { G4cout <<"Nuclear density for nucleus (z, a): " << izmat << " " << iamat << " " << imat << G4endl; } const G4double fmp = 938.2796; // From INCL data // parametres moyens de densite de la cible (fermi 2 parametres) if (iamat >= 28) { ws->r0 = (2.745e-4*iamat+1.063)*std::pow(G4double(iamat), 0.33333333); ws->adif = 1.63e-4*iamat+0.510; ws->rmaxws = ws->r0 + (ws->xfoisa)*(ws->adif); } else if(iamat >= 19) { ws->r0 = light_nuc->r[iamat-1]; ws->adif = light_nuc->a[iamat-1]; ws->rmaxws = ws->r0 + (ws->xfoisa)*(ws->adif); } else if(iamat >= 6) { ws->r0 = light_nuc->r[iamat-1]; ws->adif = light_nuc->a[iamat-1]; ws->rmaxws = 5.5 + 0.3*(double(iamat)-6.)/12.; } else if(iamat >= 2) { if(iamat == 2) { ws->r0=light_gaus_nuc->rms1t[5]; // Orig: rms1t(6) light_gaus_nuc->pfln[5] = light_gaus_nuc->pf1t[5]*1.291; // Orig [6], std::sqrt(5/3)=1.291 light_gaus_nuc->tfln[5] = std::sqrt(std::pow(light_gaus_nuc->pfln[5],2) + fmp*fmp) - fmp; light_gaus_nuc->vnuc[5] = light_gaus_nuc->tfln[5] + 2.22; if(verboseLevel > 2) { G4cout <<"Nuclear potential: " << light_gaus_nuc->vnuc[5] << "MeV, Fermi momentum and energy: " << light_gaus_nuc->pfln[5] << " " << light_gaus_nuc->tfln[5] << G4endl; } } if(iamat == 3 && izmat == 1) { ws->r0=light_gaus_nuc->rms1t[6]; // Orig: rms1t(7) light_gaus_nuc->pfln[6] = light_gaus_nuc->pf1t[6]*1.291; // Orig [7], std::sqrt(5/3)=1.291 light_gaus_nuc->tfln[6] = std::sqrt(std::pow(light_gaus_nuc->pfln[6],2) + fmp*fmp) - fmp; light_gaus_nuc->vnuc[6] = light_gaus_nuc->tfln[6] + 4.24; if(verboseLevel > 2) { G4cout <<"Nuclear potential: " << light_gaus_nuc->vnuc[6] << "MeV, Fermi momentum and energy: " << light_gaus_nuc->pfln[6] << " " << light_gaus_nuc->tfln[6] << G4endl; } } if(iamat == 3 && izmat == 2) { ws->r0 = light_gaus_nuc->rms1t[7]; // Orig: rms1t(8) light_gaus_nuc->pfln[7] = light_gaus_nuc->pf1t[7]*1.291; //!std::sqrt(5/3)=1.291 light_gaus_nuc->tfln[7] = std::sqrt(std::pow(light_gaus_nuc->pfln[7],2) + fmp*fmp) - fmp; light_gaus_nuc->vnuc[7] = light_gaus_nuc->tfln[7] + 3.86; if(verboseLevel > 2) { G4cout <<"Nuclear potential: " << light_gaus_nuc->vnuc[7] << "MeV, Fermi momentum and energy: " << light_gaus_nuc->pfln[7] << " " << light_gaus_nuc->tfln[7] << G4endl; } } if(iamat == 4) { ws->r0 = light_gaus_nuc->rms1t[8]; // Orig: rms1t(9) light_gaus_nuc->pfln[8] = light_gaus_nuc->pf1t[8]*1.291; // !std::sqrt(5/3)=1.291 light_gaus_nuc->tfln[8] = std::sqrt(std::pow(light_gaus_nuc->pfln[8],2) + fmp*fmp) - fmp; light_gaus_nuc->vnuc[8] = light_gaus_nuc->tfln[8] + 9.43; if(verboseLevel > 2) { G4cout <<"Nuclear potential: " << light_gaus_nuc->vnuc[8] << "MeV, Fermi momentum and energy: " << light_gaus_nuc->pfln[8] << " " << light_gaus_nuc->tfln[8] << G4endl; } } ws->adif = 0.57735*ws->r0; ws->rmaxws = ws->r0 + 2.5; } ws->drws = (ws->rmaxws)/29.0; // bmax for sigma geom and various projectiles (p,n,pion/d/t/he3/he4/) G4int j = 0; for(G4int i = 0; i < MATGEOSIZE; i++) { // Orig: do i=1,6 j = i; if(i >= 2) { j = i + 3; } mat->bmax_geo[i][imat] = (ws->rmaxws) + (light_gaus_nuc->rms1t[j]); } // preparation de la distribution w.s.: if (iamat >= 19) { G4double step = 0.2; res_dws = integrate(0.0, 13.5, step, derivWsaxFunction); } else { // preparation de la distribution m.h.o.: if(iamat >= 6) { step=0.1; res_dws = integrate(0.0, 10.0, step, derivMhoFunction); } else { // preparation de la distribution gaussienne: // G4double cte = std::pow(ws->adif,3)*std::sqrt(2.*3.141592654); res_dws = 3.0*(std::pow(ws->adif, 3)*std::sqrt(2.0*3.141592654))/2.0; } } fnor = res_dws; // calcul de q/pf=f(r) nbr = int(std::floor((ws->rmaxws)/(ws->drws) + 1.5)); rcour = -1*(ws->drws); j = 0; for(G4int i = 0; i < nbr; i++) { // do i=1,nbr rcour = rcour + (ws->drws); if(i == 0) { // 1->0 f_r = 0.0; saxw->x[j][imat] = f_r; saxw->y[j][imat] = 0.0; //!on impose x(1)=0., y(1)=0. res_dws = 0.0; } else { step = rcour/20.; if(step >= 0.05) { step = 0.05; } if (iamat >= 19) { //integ(ws, dton, 0.,rcour,step,&derivwsax,&res_dws); res_dws = integrate(0.0, rcour, step, derivWsaxFunction); f_r = res_dws/fnor; } else { if(iamat >= 6) { //integ(ws, dton, 0.,rcour,step,&derivmho,&res_dws); res_dws = integrate(0.0, rcour, step, derivMhoFunction); f_r = res_dws/fnor; } else { //integ(ws, dton, 0.,rcour,step,&derivgaus,&res_dws); res_dws = integrate(0.0, rcour, step, derivGausFunction); f_r = res_dws/fnor; } } // modif le 20/10/2003; éviter les valeurs négatives avant **1/3 ! // } if(f_r >= 0.0) { f_r = std::pow(f_r,(1./3.)); saxw->x[j][imat] = f_r; saxw->y[j][imat] = rcour; } } j = j + 1; } saxw->n = j; saxw->x[j-1][imat] = 1.; // !on impose saxw->x[nbpinter-1]=1. (y=rmax) // interpolation de f_inv(r) (fonction inverse de f(r)) // flin2(imat, saxw, ws); firstDerivative(imat); if(verboseLevel > 3) { if(iamat >= 19) { G4cout <<"Wood-Saxon density, r0 = " << ws->r0 << " a = " << ws->adif << G4endl; } if(iamat >= 6 && iamat <= 19) { G4cout <<"Modif. harm. oscil. density, alpha = " << ws->r0 << " a = " << ws->adif << G4endl; } if(iamat >= 2 && iamat <= 6) { G4cout <<"Gaussian density, r.m.s = " << ws->r0 << " sigma = " << ws->adif << G4endl; } } geom = 31.41592653*std::pow(ws->rmaxws,2); if(verboseLevel > 3) { G4cout <<"For incident nucleons or pions rmax = " << ws->rmaxws << " and geometrical (pi*rmaxws*rmaxws) reaction cross section (mb) is " << geom << G4endl; for(G4int k = 2; k < MATGEOSIZE; k++) { G4cout << "Rmaxws for d/t/3he/4he = " << mat->bmax_geo[k][imat] << G4endl; } G4cout <<"Exact calculation of the r(q) function for the target nucleus density q/pf r(q/pf)" << G4endl; } } G4double G4Incl::deutv(G4int l, G4double q) { G4double res = 0.0; if (l == 0) { for(G4int i = 0; i < DTONSIZE; i++) { res = res + dton->c[i]/(std::pow(q,2) + fm2(i+1)); } } if(l != 0) { for(G4int i = 0; i < DTONSIZE; i++) { res = res + dton->d[i]/(std::pow(q,2) + fm2(i+1)); } } return res*std::sqrt(2./CLHEP::pi)*dton->fn; // See G4InclDataDefs.hh } G4double G4Incl::fm2(G4int j) { /** * In implementation Returns the values of the function: * \f[ * (0.23162461 + (j - 1))^2 * \f] * @param j an integer parameter * @return a double value */ return std::pow((0.23162461 + (j - 1)),2); } G4double G4Incl::interpolateFunction(G4double xv) { // fonction d'interpolation au point xv ( meme hors bornes ) // de la fn x->y dont les derivees premieres (s) ont ete // evaluees par l'appel prealable de flin2 // les indices vont de 1 a n saxw->k = saxw->imat; G4double tz = xv - saxw->x[0][saxw->imat]; G4int j = 0; if(tz < 0) { #ifdef G4INCLDEBUG theLogger->fillHistogram1D("interpolationResult", (saxw->y[0][saxw->imat] + saxw->s[0][saxw->imat]*tz)); theLogger->fillHistogram2D("interpolationPoints", (saxw->y[0][saxw->imat] + saxw->s[0][saxw->imat]*tz), xv); #endif return (saxw->y[0][saxw->imat] + saxw->s[0][saxw->imat]*tz); } else if(tz == 0) { #ifdef G4INCLDEBUG theLogger->fillHistogram1D("interpolationResult", (saxw->y[0][saxw->imat])); theLogger->fillHistogram2D("interpolationPoints", (saxw->y[0][saxw->imat]), xv); #endif return (saxw->y[0][saxw->imat]); } else { // tz > 0 for(G4int i = 1; i < saxw->n; i++) { j = i; tz = xv - saxw->x[j][saxw->imat]; if(tz <= 0) { break; } } if(tz >= 0) { #ifdef G4INCLDEBUG theLogger->fillHistogram1D("interpolationResult", saxw->y[j][saxw->imat]); theLogger->fillHistogram2D("interpolationPoints", saxw->y[j][saxw->imat], xv); #endif return saxw->y[j][saxw->imat]; } else if(tz < 0.0) { j = j - 1; G4double dgx = xv - saxw->x[j][saxw->imat]; #ifdef G4INCLDEBUG theLogger->fillHistogram1D("interpolationResult", (saxw->y[j][saxw->imat] + saxw->s[j][saxw->imat]*dgx)); theLogger->fillHistogram2D("interpolationPoints", (saxw->y[j][saxw->imat] + saxw->s[j][saxw->imat]*dgx), xv); #endif return(saxw->y[j][saxw->imat] + saxw->s[j][saxw->imat]*dgx); } } return 0.0; } void G4Incl::firstDerivative(G4int k) { for(G4int i=0; i < saxw->n-1; i++) { if((saxw->x[i+1][k] - saxw->x[i][k]) == 0.0) { // Safeguard to avoid division by zero saxw->s[i][k] = 0.0; continue; } saxw->s[i][k] = (saxw->y[i+1][k] - saxw->y[i][k]) / (saxw->x[i+1][k] - saxw->x[i][k]); } saxw->s[saxw->n-1][k] = saxw->s[saxw->n-2][k]; } G4double G4Incl::wsax(G4double r) { return std::pow(r,2) / (1.0+std::exp(r-(ws->r0)/(ws->adif))); } G4double G4Incl::derivWsax(G4double r) { G4double derivwsax = std::pow(r,3)*std::exp((r-(ws->r0))/(ws->adif))/std::pow((1.0+std::exp((r-(ws->r0))/(ws->adif))),2); return derivwsax/(ws->adif); } G4double G4Incl::dmho(G4double r) { G4double arg=std::pow((r/(ws->adif)),2); return r*r*(1.+(ws->r0)*arg)*std::exp(-arg); } G4double G4Incl::derivMho(G4double r) { G4double arg=std::pow((r/(ws->adif)),2); return -2.*r*r*arg*((ws->r0) -1.-(ws->r0)*arg)*std::exp(-arg); } G4double G4Incl::derivGaus(G4double r) { G4double arg=std::pow((r/(ws->adif)),2); return r*r*arg*std::exp(-arg/2.); } void G4Incl::densDeut() { // ce subroutine appele sur le premier tir va calculer la densite du deuton // dans l'espace des impulsions et preparer l'interpolation permettant ensuite // le tir au hasard d'un module de l'impulsion (q). // ce subroutine remplit le common /spl2/: // xsp(0:1), ysp integrale normalisee de la densite de 0 a q. // a(),b(),c() coefs des nsp points pour une interpolation du second degre. // q est en fm-1. // 495 dimension q(100),f(100) // 496 common/spl2/ xsp(100),ysp(100),a(100),b(100),cc(100),nbp G4double cData[DTONSIZE] = {0.88688076e+00,-0.34717093e+00,-.30502380e+01, .56207766e+02,-.74957334e+03,.53365279e+04,-.22706863e+05, .60434469e+05,-.10292058e+06,.11223357e+06,-.75925226e+05, .29059715e+05,-.48157368e+04}; G4double dData[DTONSIZE] = {.23135193e-01,-.85604572e+00,.56068193e+01, -.69462922e+02,.41631118e+03,-.12546621e+04,.12387830e+04, .33739172e+04,-.13041151e+05,.19512524e+05,-.15634324e+05, .66231089e+04,-.11698185e+04}; G4double fnData = 0.28212e+00; for(G4int i = 0; i < DTONSIZE; i++) { dton->c[i] = cData[i]; dton->d[i] = dData[i]; } dton->fn = fnData; // 509 c avec fn=.28212 les fo radiales suivantes sont normalisees a: deu00470 // 510 c somme(0,infini)(deut0(q)**2 + deut2(q)**2))*q*q*dq = 1./4*pi deu00480 // 511 c et ceci dans l'espace r et dans l'espace q. pd=5.74% deu00490 // 512 cjcd // 513 common /inout/ in, io, itty, iscrt // 514 cjcd const G4int qsize = 100; G4double q[qsize]; G4double f[qsize]; for(G4int init_i = 0; init_i < qsize; init_i++) { q[init_i] = 0.0; f[init_i] = 0.0; } G4double dq=0.01; q[0]=0.0; for(G4int i = 1; i < 50; i++) { q[i] = q[i-1] + dq; f[i] = 0.0; } spl2->n = 77; // nombre de points de calcul dq=0.1; for(G4int i = 50; i < spl2->n; i++) { q[i] = q[i-1] + dq; } f[0]=0.0; G4double sumint=0.0; // the id if the function we wish to integrate (in this case: G4Incl::dens for(G4int i = 1; i < spl2->n; i++) { dq = (q[i]-q[i-1])/10.0; sumint = sumint + integrate(q[i-1], q[i], dq, densFunction); f[i] = sumint; } for(G4int i = 0; i < spl2->n; i++) { spl2->x[i] = f[i]/f[spl2->n-1]; spl2->y[i] = q[i]; } spl2ab(); if(verboseLevel > 3) { G4cout << "deuteron density in q space from Paris potential: " << spl2->n << " Exact values from 0 to " << q[spl2->n-1] << " fm-1 " << G4endl; } } G4double G4Incl::integrate(G4double ami, G4double ama, G4double step, G4int functionChoice) { G4double res = 0.0; G4double x1[5]; for(G4int init_i = 0; init_i < 5; init_i++) { x1[init_i] = 0.0; } G4double ri = ami; G4double ra = ama; G4int nb = 0; G4double acont = 1.0; G4double dr = step; if(ama <= ami) { acont = -1.0; ri = ama; ra = ami; } x1[0] = 95.0/288.0; x1[1] = 317.0/240.0; x1[2] = 23.0/30.0; x1[3] = 793.0/720.0; x1[4] = 157.0/160.0; nb = int(std::floor(((ra - ri)/dr + 1.0000000001))); // 1.0000000001 -> 0.0 dr = (ra - ri)/(double(nb - 1)); res = 0.0; if(nb < 10) { if(verboseLevel > 2) { G4cout <<"pas assez de points d'integration" << G4endl; } return 0.0; } for(G4int i = 0; i < 5; i++) { res = res + (callFunction(functionChoice, ri) + callFunction(functionChoice, ra))*x1[i]; ri = ri + dr; ra = ra - dr; } nb = nb - 10; if(nb == 0) { return (res*dr*acont); } for(G4int i = 0; i < nb; i++) { res = res + callFunction(functionChoice, ri); ri = ri + dr; } return(res*dr*acont); } G4double G4Incl::dens(G4double q) { return q*q*(std::pow(deutv(0,q),2)+std::pow(deutv(2,q),2)); } void G4Incl::spl2ab() { G4int i = 0, j = 0, k = 0; for(i=0; i <= spl2->n-3; i++) { j = i + 1; k = i + 2; spl2->c[i] = ((spl2->y[k]-spl2->y[i])*(spl2->x[j]-spl2->x[i])-(spl2->x[k]-spl2->x[i])*(spl2->y[j]-spl2->y[i])) /((spl2->x[j]-spl2->x[i])*(spl2->x[k]-spl2->x[i])*(spl2->x[k]-spl2->x[j])); spl2->b[i] = (spl2->y[j]-spl2->y[i])/(spl2->x[j]-spl2->x[i]); spl2->a[i] = spl2->y[i]; } for(i = spl2->n-2; i < spl2->n; i++) { spl2->c[i] = spl2->c[spl2->n-3]; spl2->b[i] = spl2->b[spl2->n-3]; spl2->a[i] = spl2->a[spl2->n-3]; } } G4double G4Incl::splineab(G4double xv) { G4double tz = xv-spl2->x[0]; G4int j; if(tz < 0) { return spl2->a[0] + spl2->b[0] * tz + spl2->c[0] * tz * (xv - spl2->x[1]); } if(tz == 0) { return spl2->y[0]; } if(tz > 0) { for(G4int i = 1; i <= spl2->n-1; i++) { j = i; tz = xv - spl2->x[i]; if(tz < 0) { j = j - 1; tz = xv - spl2->x[j]; return spl2->a[j] + spl2->b[j] * tz + spl2->c[j] * tz * (xv - spl2->x[j+1]); } if(tz == 0) { return spl2->y[j]; } } } // Returns 0.0 if the point xv is outside the defined region (xv > spl2->x[spl2->n-1]) if(verboseLevel > 2) { G4cout <<"G4Incl::splineab : requested point outside defined region! Returning 0.0." << G4endl; } return 0.0; } // Actual calculation void G4Incl::pnu(G4int *ibert_p, G4int *nopart_p, G4int *izrem_p, G4int *iarem_p, G4double *esrem_p, G4double *erecrem_p, G4double *alrem_p, G4double *berem_p, G4double *garem_p, G4double *bimpact_p, G4int *l_p, G4double *xjrem, G4double *yjrem, G4double *zjrem) { // G4cout <<"Now in pnu..." << G4endl; // G4cout <<"(clean-up)" << G4endl; G4int npenter = 0; G4int nnenter = 0; G4int n_enter_pot = 0; G4int avatarCounter = 0; ps->clear(); // For projectile spectators // G4int i_c = 0; G4double p1spec=0.; G4double p2spec=0.; G4double p3spec=0.; // G4double p_spec2 = 0.0; // G4double s_spec = 0.0; // G4double e_spec = 0.0; G4double xl1_i, xl2_i, xl3_i; G4int idq = 0; G4double destar = 0.0; // G4cout <<"(checkpoint 'setipszero0)" << G4endl; G4int ips = 0; // G4double p1_spec = 0.0; // G4double p2_spec = 0.0; // G4double p3_spec = 0.0; G4int n_activnuc = 0; G4int ibert = (*ibert_p); // float f[15]; // = (*f_p); G4int nopart = (*nopart_p); // G4int kind[300]; //= (*kind_p); // G4double ep[300]; // = (*ep_p); // G4double alpha[300]; // = (*alpha_p); // G4double beta[300]; // = (*beta_p); // G4double gam[300]; // = (*gam_p); G4int izrem = (*izrem_p); G4int iarem = (*iarem_p); G4double esrem = (*esrem_p); G4double erecrem = (*erecrem_p); G4double alrem = (*alrem_p); G4double berem = (*berem_p); G4double garem = (*garem_p); G4double bimpact = (*bimpact_p); G4int l = (*l_p); G4double minus_b1 = 0.0, minus_b2 = 0.0, minus_b3 = 0.0; G4double aml1 = 0.0; G4double aml2 = 0.0; G4double amlnew = 0.0; G4double arg = 0.0; G4double b1 = 0.0; G4double b2 = 0.0; G4double b3 = 0.0; G4double bb2 = 0.0; G4double bevar = 0.0; G4double bmass[2000]; for(G4int init_i = 0; init_i < 2000; init_i++) { bmass[init_i] = 0.0; } G4double bmax2 = 0.0; G4double c1 = 0.0; G4double c2 = 0.0; G4double cb0 = 0.0; G4double cchi = 0.0; G4double ccr = 0.0; G4double cg = 0.0; G4double cif = 0.0; G4double cmultn = 0.0; G4double cobe = 0.0; G4double coeffb0 = 0.0; G4double comom = 0.0; G4double cstet = 0.0; G4double dis1 = 0.0; G4double dis2 = 0.0; G4double dis3 = 0.0; G4double dist = 0.0; G4double eb0 = 0.0; G4double ecoreh5 = 0.0; G4double efer = 0.0; G4double egs = 0.0; G4double eh5 = 0.0; G4double eh6 = 0.0; G4double eij = 0.0; G4double ekout = 0.0; G4double elead = 0.0; G4double energie_in = 0.0; G4double ener_max = 0.0; G4double eout = 0.0; // G4double eps_c[BL1SIZE]; // G4double p3_c[BL1SIZE]; // for(G4int init_i = 0; init_i < BL1SIZE; init_i++) { // eps_c[init_i] = 0.0; // p3_c[init_i] = 0.0; // } G4double epsv = 0.0; G4double erecg = 0.0; G4double erem = 0.0; G4double exi = 0.0; G4double expob0 = 0.0; G4double factemp = 0.0; G4double fffc = 0.0; G4double fm = 0.0; G4double g1 = 0.0; G4double g2 = 0.0; G4double ge = 0.0; G4double geff = 0.0; G4double gg = 0.0; G4double gl1 = 0.0; G4double gl2 = 0.0; G4double gpsg = 0.0; G4int i1 = 0; G4int i20 = 0; G4int ic33 = 0; G4int ich1 = 0; G4int ich2 = 0; G4int ich3 = 0; G4int ich4 = 0; G4int ichd = 0; G4int ichpion = 0; G4int idecf = 0; G4int idep = 0; G4int iej = 0; G4int iejn = 0; G4int iejp = 0; G4int i_emax = 0; G4int iflag = 0; G4int iflag20 = 0; G4int iflag40 = 0; G4int iflag60 = 0; G4int ilm = 0; G4int imin = 0; G4int indic[3000]; G4int nb_transprojo=0; G4double v_proj = 0.0; for(G4int init_i = 0; init_i < 3000; init_i++) { indic[init_i] = 0; } G4int inrem = 0; G4int ip = 0; G4int ipi[2000]; for(G4int init_i = 0; init_i < 2000; init_i++) { ipi[init_i] = 0; } G4int iqe = 0; G4int irem = 0; G4int irst_avatar = 0; G4int isos = 0; G4int itch = 0; G4int iteste = 0; G4int itt = 0; G4int ixr1 = 0; G4int ixr2 = 0; G4int ixr3 = 0; // G4int k; G4int kcol = 0; G4int kd = 0; // G4int klm = 0; // G4int l1; // G4int l2; G4int ldel = 0; G4int lead = 0; G4int led = 0; G4int lnew = 0; G4int lp = 0; G4int lp1 = 0; G4double mcdd = 0.0; //G4double mg; G4int mg = 0; G4double mpaul1 = 0.0; G4double mpaul2 = 0.0; G4double mrdd = 0.0; G4double mrdn = 0.0; G4double mrdp = 0.0; G4double mrnd = 0.0; G4double mrnn = 0.0; G4double mrpd = 0.0; G4int n20 = 0; G4int nbalttf = 0; G4int nbquit = 0; G4int nbtest = 0; G4int nc[300]; G4bool isPartOfSpectatorNucleus[300]; G4int npproj[300]; for(G4int init_i = 0; init_i < 300; init_i++) { nc[init_i] = 0; npproj[init_i] = 0; } G4int ncol = 0; G4int ncol_2c = 0; G4int next = 0; G4int nmiss = 0; G4int np = 0; G4int npidir = 0; G4int npion = 0; G4int npx = 0; G4int nsum_col = 0; G4double p1v = 0.0; G4double p2v = 0.0; G4double p3v = 0.0; G4double pfrem1 = 0.0; G4double pfrem2 = 0.0; G4double pfrem3 = 0.0; G4double pfreml = 0.0; G4double pfreml2 = 0.0; G4double phi = 0.0; G4double p_mod = 0.0; G4double pot = 0.0; G4double pout1 = 0.0; G4double pout2 = 0.0; G4double pout3 = 0.0; G4double pppp = 0.0; G4double prem1 = 0.0; G4double prem2 = 0.0; G4double prem3 = 0.0; G4double psf = 0.0; G4double pspr = 0.0; G4double ptotl = 0.0; G4double qdeut = 0.0; G4double qqq = 0.0; G4double r22 = 0.0; G4double rcm1 = 0.0; G4double rcm2 = 0.0; G4double rcm3 = 0.0; G4double rcorr = 0.0; G4double rhopi = 0.0; G4double rndm = 0.0; G4double rr = 0.0; G4double rrrr = 0.0; G4double s = 0.0; G4double s1t1 = 0.0; G4double s2t1 = 0.0; G4double s3t1 = 0.0; G4double schi = 0.0; G4double sepa = 0.0; G4double sif = 0.0; G4double sitet = 0.0; G4double sp1t1 = 0.0; G4double sp2t1 = 0.0; G4double sp3t1 = 0.0; G4double sq = 0.0; G4double sueps = 0.0; G4double t[50]; for(G4int init_i = 0; init_i < 50; init_i++) { t[init_i] = 0.0; } G4double t0 = 0.0; G4double t1 = 0.0; G4double t2 = 0.0; G4double t3 = 0.0; G4double t33 = 0.0; G4double t4 = 0.0; G4double t5 = 0.0; G4double t6 = 0.0; G4double t7 = 0.0; G4double t8 = 0.0; G4double tau = 0.0; G4double tbid = 0.0; G4double tdel = 0.0; G4double temfin = 0.0; G4double tim = 0.0; G4double timi = 0.0; G4double tlabu = 0.0; G4double tp = 0.0; G4double tref = 0.0; G4double tri = 0.0; G4double tt31 = 0.0; G4double tt32 = 0.0; G4double tt33 = 0.0; G4double tt34 = 0.0; G4double tt35 = 0.0; G4double tt36 = 0.0; G4double tte = 0.0; G4double u = 0.0; G4double v = 0.0; G4double var_ab = 0.0; G4double x = 0.0; G4double x1l1 = 0.0; G4double x1l2 = 0.0; G4double x1_target = 0.0; G4double x2_target = 0.0; G4double x3_target = 0.0; G4double x2cour = 0.0; G4double x2l1 = 0.0; G4double x2l2 = 0.0; G4double x3l1 = 0.0; G4double x3l2 = 0.0; G4double xapres = 0.0; G4double xavant = 0.0; G4double xbl1 = 0.0; G4double xbl2 = 0.0; G4double xc = 0.0; G4double xe = 0.0; G4double xga = 0.0; G4double xl1 = 0.0; G4double xl2 = 0.0; G4double xl3 = 0.0; G4double xlab = 0.0; G4double xleng = 0.0; G4double xlengm = 0.0; G4double xpb = 0.0; G4double xq = 0.0; G4double xr1 = 0.0; G4double xr2 = 0.0; G4double xr3 = 0.0; G4double xr4 = 0.0; G4double xr5 = 0.0; G4double xr6 = 0.0; G4double xr7 = 0.0; G4double xr8 = 0.0; G4double xv = 0.0; G4double xxx = 0.0; G4double xy1 = 0.0; G4double xy2 = 0.0; G4double xy3 = 0.0; G4double xye = 0.0; G4double y = 0.0; G4double q1[BL1SIZE]; G4double q2[BL1SIZE]; G4double q3[BL1SIZE]; G4double q4[BL1SIZE]; G4double ym[BL1SIZE]; for(G4int init_i = 0; init_i < BL1SIZE; init_i++) { q1[init_i] = 0.0; q2[init_i] = 0.0; q3[init_i] = 0.0; q4[init_i] = 0.0; ym[init_i] = 0.0; } G4double y1[BL3SIZE]; G4double y2[BL3SIZE]; G4double y3[BL3SIZE]; for(G4int init_i = 0; init_i < BL1SIZE; init_i++) { y1[init_i] = 0.0; y2[init_i] = 0.0; y3[init_i] = 0.0; } G4double z = 0.0; G4double za_i = 0.0; G4double zai2 = 0.0; G4double zshif = 0.0; G4double ztouch = 0.0; G4double ztu = 0.0; // LIEGE INC-model as a subroutine // The Liege INC model has been applied to several systems and in // several conditions. Refinements are still in progress. // PLEASE refer to this version as INCL4.1 in order to avoid // confusion when comparing to the results of your colleagues. // DIFFERENT from INCL2.0 in the sense that the cascade is stopped // when the excitation energy vanishes if this occurs before the // predetermined stopping time (herein denoted as temfin) Special // are taken to avoid emission of slow particles due to the // imperfect Pauli blocking // PLEASE notice: There are basically only two parameters in the // model: the average potential depth, denoted as V0, and the time // at which the cascade is stopped denoted as temfin. In this // program, the "standard" values (those G4introduced in the ref // NPA620(1997)475) are V0=40MeV and temfin=1.25*some function of // incident energy and impact parameter. You may, of course, change // these parameters V0 and the numerical coefficient in temfin, // within reasonable limits (i.e. V0 cannot be lower than 38MeV; // V0=45MeV is recommended for heavy nuclei). If you do, PLEASE // indicate your choice, once again, for the same reason as above. // The description of the cascade model(incl2.0) can be found in: // J.C., C.VOLANT & S.VUILLIER, NPA620(1997)475 It is basically the // same model as described in J.C. NPA462(1987)751 (version 7 (in // our jargon), sketched below) + a refinement of the // parametrization of the cross-sections, based on J.C., D. L'HOTE, // J.VANDERMEULEN, NIM B111(1996)215 and J.C., S.LERAY, E.MARTINEZ, // Y.PATIN & S.VUILLIER PRC56(1998)2431 // technical notes: // 1.for the parametrizations of cross sections, see // notes of 4/10/96, 9/10/96, 31/12/97 and 13/10/98 // 2.temfin=1.25*... 18/6/98 // 3.sepa in concordance with v0-tf 2/7/98 // 4.special care for stopping the cascade before t=temfin 27/04/99 // 84 c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ // 85 C P-N00030 // 86 C VERSION 7: 2/2/93 P-N00040 // 87 C // 88 C++++++++++++ DESCRIPTION OF INPUT AND OUTPUT+++++++++++++++++++++++++++++ // 89 C // 90 C **INPUT DATA** // 91 C // 92 C IBERT=O IN THE FIRST CALL // 93 C 1 IN THE SUBSEQUENT CALLS // 94 C // 95 C F= (REAL) ARRAY OF DIMENSION 8 // 96 C // 97 C F(1)= A (TARGET) // 98 C F(2)= Z (TARGET) // 99 C F(3)= KINETIC ENERGY (IN MEV) OF THE INCIDENT PARTICLE // 100 C F(4)= SUPPOSED TO BE THE MINIMUM PROTON ENERGY REQUIRED TO LEAVE // 101 C THE TARGET. IN THIS CASCADE MODEL, IT IS ZERO // 102 C F(5)= Nuclear potential V0 (standard value=45 MeV for heavy nuclei) // 103 C F(6)= Rescale the cascade duration (the standard value t0 is MULTIPLIED // 104 c by this value. F(6)=1. is the standard) // 105 C F(7)= TYPE OF INCIDENT PARTICLE // 106 C 1.00 FOR PROTON // 107 C 2.00 FOR NEUTRON // 108 C 3.00 FOR PI+ // 109 C 4.00 FOR PI0 // 110 C 5.00 FOR PI- // 111 C 6.00 FOR DEUTERON // 112 C 7.00 FOR TRITON // 113 C 8.00 FOR HE3 // 114 C 9.00 FOR HE4 // 115 C F(8)= SUPPOSED TO BE THE MINIMUM NEUTRON ENERGY REQUIRED TO LEAVE // 116 C THE TARGET. IN THIS CASCADE MODEL, IT IS ZERO // 117 C // 118 C NOSURF=1 Sharp density (hard sphere), // 119 C NOSURF=0 Wood-Saxon density, stopping time "70" // 120 C without B (impact) dependence. // 121 C NOSURF=-1 Wood-Saxon density, stopping time "70" // 122 C with B (impact) dependence // 123 C (on peut toujours nenormaliser ces fonctions // 124 C de temps avec le facteur F(6): t=t0*F(6) ) // 125 C XFOISA Rmaxws = R0 + XFOISA*A // 126 C Bmax = Rmaxws for pions and nucleons // 127 C Bmax = Rmaxws + rms1t (data) for composits // 128 C Pauli strict (1) or statistic (0) or without pauli (2): NPAULSTR // 129 C // 130 C F(9)= imat, target material identifier for the right choose of Sax.-Wood density // 131 c // 132 c common/hazard/ial,IY1,IY2,IY3,IY4,IY5,IY6,IY7,IY8,IY9,IY10, // 133 c s IY11,IY12,IY13,IY14,IY15,IY16,IY17,IY18,IY19 // 134 c ......20 numbers in the main routine to initialize the random numbers // 135 c // 136 C **OUTPUT DATA** // 137 C // 138 C NOPART=-1 PSEUDO REACTION (VOID EVENT) // 139 C 0 ABSORPTION // 140 C >0 TRUE EVENT, = NUMBER OF PARTICLES EMITTED (EXCLUDING THE REMNANT) // 141 C // 142 C FOR N=1,NOPART: // 143 C KIND(N)= TYPE OF PARTICLES (SAME CONVENTION AS FOR F(7), BUT IN G4INTEGERS) // 144 C // 145 C EP(N)= KINETIC ENERGY // 146 C // 147 C ALPHA(N),BETA(N),GAM(N)= DIRECTION COSINES // 148 C // 149 C IZREM= Z (REMNANT) // 150 C // 151 C IAREM= A (REMNANT) // 152 C // 153 C ESREM= EXCITATION ENERGY OF THE REMNANT // 154 C // 155 C ERECREM= RECOIL ENERGY OF THE REMNANT // 156 C // 157 C ALREM,BEREM,GAREM=DIRECTION COSINES OF THE REMNANT // 158 C // 159 C BIMPACT impact parameter // 160 C // 161 C L G4intrinsic momentum of the remnant in units of h/2pi=hbar=197.328 // 162 C+++++++++ DESCRIPTION OF THE INC MODEL ++++++++++++++++++++++++++++++++++++ // 163 C // 164 C MODEL DESCRIBED IN J.CUGNON (NP A462(1987)751) P-N00050 // 165 C =MODEL (DR) OF J.CUGNON,D.KINET,J.VANDERMEULEN(NP A379(1982)567) P-N00060 // 166 C P-N00110 // 167 C +REFLECTION OR TRANSMISSION ON THE POTENTIAL WALL P-N00120 // 168 C (THE POTENTIAL DEPTH IS THE SAME FOR NUCLEONS & DELTA'S) P-N00130 // 169 C (CONTAINS A COULOMB BARRIER) P-N00140 // 170 C P-N00150 // 171 C +ABSORPTION OF THE PION ABOVE THE (3,3) RESONANCE (NOT IN P-N00160 // 172 C VERSION 2) P-N00170 // 173 C P-N00180 // 174 C +POSSIBLE PAULI BLOCKING OF TWO BODY COLLISIONS P-N00190 // 175 C +POSSIBLE PAULI BLOCKING OF DELTA DECAY P-N00200 // 176 C THE PAULI BLOCKING IS APPLIED TO THE NUCLEONS P-N00210 // 177 C ONLY.THE PAULI BLOCKING FACTORS ARE EVALUATED P-N00220 // 178 C BY COUNTING THE NUCLEONS INSIDE A VOLUME IN P-N00230 // 179 C PHASE SPACE.THE EXTENSION OF THIS VOLUME IS P-N00240 // 180 C OF THE ORDER OF H**3 P-N00250 // 181 C P-N00260 // 182 C ADDITIONAL FEATURES: P-N00270 // 183 C P-N00280 // 184 C +ISOSPIN (WITH NEW PN BACKWARD-FORWARD ASYMMETRY) P-N00290 // 185 C P-N00300 // 186 C +"LONGITUDINAL GROWTH" OF THE BARYONS (NOT ACTIVATED HERE) // 187 C // 188 C + PARTICLE #1 IS ALWAYS THE FASTEST PARTICLE IN THE Z-DIRECTIONP-N00100 // 189 C (NOT ACTIVATED HERE) // 190 C +SIMPLIFIED NEUTRON EVAPORATION AT THE END OF THE CASCADE P-N00310 // 191 C (NOT PRESENT HERE) // 192 C // 193 C +POSSIBLE CONSERVATION OF ANGULAR MOMENTUM (NOT ACTIVATED // 194 C HERE, COPIED FROM P_NUCJ) // 195 C P-NU7=SAME AS P-NU6 + EVAPORATION P-N00330 // 196 C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++P-N00340 // 197 // 198 DIMENSION f(15),kind(300),ep(300),alpha(300),beta(300),gam(300) // 199 DIMENSION bmass(300) // 200 COMMON/hazard/ial,IY1,IY2,IY3,IY4,IY5,IY6,IY7,IY8,IY9,IY10, // 201 s IY11,IY12,IY13,IY14,IY15,IY16,IY17,IY18,IY19 // 202 COMMON/kind/kindf7 // 203 DIMENSION IND(20000),JND(20000) P-N00350 // 204 DIMENSION INDIC(3000) P-N00360 // 205 DIMENSION NPAR(625,15),NIMP(600,15),NNCO(15),NIMPP(600) P-N00370 // 206 DIMENSION NENTR(10,8,20,10),NOUT1(15),NOUT2(15) P-N00380 // 207 // 208 c DIMENSION TEM(15),NSR(40),NSP(40),NSR1(40),NSP1(40) P-N00400 // 209 DIMENSION TEM(15),NSR1(40),NSP1(40) P-N00400 // 210 DIMENSION T(200),LINE(132),Q1(200),Q2(200),Q3(200),Q4(200),NC(300)P-N00410 // 211 DIMENSION Y1(200),Y2(200),Y3(200),YM(200),IPI(200) P-N00420 // 212 DIMENSION NRNN(15),NRND(15),NRDD(15),NRDN(15),NRDP(15),NRPD(15),NCP-N00430 // 213 -DD(15),NPAUL1(15),NPAUL2(15) P-N00440 // 214 DIMENSION NPDIR(600) P-N00450 // 215 DIMENSION NEJ(6,15),NRES(6,15),NPIA(6,15),NCHPRO(15),NDEL(15) P-N00460 // 216 DIMENSION EDEP1(15),EDEP2(15),EDEP3(15),EDEP4(15),NG4INT(15) P-N00470 // 217 -,EPAR1(15),EPAR2(15),EPAR3(15),EPAR4(15),ENPI(15),E1(15),EZ3(15) P-N00480 // 218 DIMENSION IHF1(50),IHF2(50),IHF3(50),IHF4(50),IHP(2,100),IHC(50), P-N00490 // 219 -IHE(2,100),IHF5(100),IHREM(100,100) // 220 // 221 DIMENSION JPARTICIP(300),eps_c(4),p3_c(4) // 222 // 223 C Dialogue with INCL: function R(q/pf) for each nucleus // 224 COMMON/SAXW/ XX(30,500),YY(30,500),SS(30,500),NBPG4INTER,IMAT // 225 COMMON/WS/R0,ADIF,RMAXWS,DRWS,NOSURF,XFOISA,NPAULSTR,BMAX // 226 // 227 C RMS espace R, espace P, Fermi momentum and energy for light gauss nuc. // 228 COMMON/light_gaus_nuc/rms1t(9),pf1t(9),pfln(9),tfln(9),vnuc(9) // 229 // 230 C Fermi 2 param from A=19 to 28, modified harm oscil A=6 to 18 // 231 C (H. De Vries et al. At. Data and Nuc. Data Tab. 36 (1987) 495) // 232 COMMON/light_nuc/R_light_nuc(30),a_light_nuc(30) // 233 // 234 c common for study of avatars through an ntuple optionally produced // 235 real*4 bavat,timeavat,energyavat // 236 G4integer bloc_paul,bloc_cdpp,go_out,avm,del1avat,del2avat // 237 parameter (avm=1000) // 238 common/var_avat/kveux,bavat,nopartavat,ncolavat, // 239 s r1_in(3),r1_first_avat(3), // 240 s epsd(250),eps2(250),eps4(250),eps6(250),epsf(250), // 241 s nb_avat, // 242 s timeavat(avm),l1avat(avm),l2avat(avm),jpartl1(avm),jpartl2(avm), // 243 s del1avat(avm),del2avat(avm),energyavat(avm), // 244 s bloc_paul(avm),bloc_cdpp(avm),go_out(avm) // 245 // 246 dimension npproj(300) // 247 common/spl2/ xsp(100),ysp(100),ad(100),bd(100),cd(100),ndeut // 248 c deutons // 249 c dimension ltt(15) p-n00520 // 250 common/bl1/p1(300),p2(300),p3(300),eps(300),ind1(300),ind2(300),tap-n00530 // 251 common/bl2/crois(19900),k,ind,jnd p-n00540 // 252 common/bl3/r1,r2,x1(300),x2(300),x3(300),ia1,ia2,rab2 p-n00550 // 253 common/bl4/tmax5 p-n00560 // 254 common/bl5/tlg(300),nesc(300) p-n00570 // 255 common/bl6/xx10,isa p-n00580 // 256 common/bl8/rathr,ramass // 257 common/bl9/hel(300),l1,l2 // 258 common/bl10/ri4,rs4,r2i,r2s,pf // 259 common/paul/ct0,ct1,ct2,ct3,ct4,ct5,ct6,pr,pr2,xrr,xrr2, // 260 s cp0,cp1,cp2,cp3,cp4,cp5,cp6 // 261 // 262 dimension ia1t(9),iz1t(9),fmpinct(9) // 264 data line/132*1h*/,hc,fmp,fmd,fmpi/197.328,938.2796,1232.,138.00/ p-n00590 G4double hc = 197.328; G4double fmp = 938.2796; G4double fmpi = 138.00; // 265 data /ia1t,iz1t,fmpinct/1,1,0,0,0,2,3,3,4,1,0,1,0,-1,1,1,2,2, // 266 -938.2796,938.2796,138.0,138.0,138.0,1874.35,2806.8,2806.8,3727. G4int ia1t[9] = {1,1,0,0,0,2,3,3,4}; G4int iz1t[9] = {1,0,1,0,-1,1,1,2,2}; G4double fmpinct[9] = {938.2796,938.2796,138.0,138.0,138.0,1874.35,2806.8,2806.8,3727.}; // Initialize array: for(G4int i = 0; i < 300; i++) { npproj[i] = 0; isPartOfSpectatorNucleus[i] = false; nc[i] = 0; } // 266 // 267 c data rms1t,pf1t/0.,0.,0.,0.,0.,2.10,1.80,1.80,1.63, // 268 c -0.,0.,0.,0.,0.,77.,110.,110.,153./ // 269 // 270 // 271 c deutons // 272 data nentr/16000*0/ p-n00620 // 389 c p-n01700 // 390 ccc reading of the data p-n01710 // 391 c p-n01720 // 392 c-------explanation of some physical quantities------------------------ p-n01730 // 393 c (basically input data, when run as a program) // 394 c p-n01740 // 395 c ia1=mass number of the incident ion p-n01750 // 396 c p-n01760 // 397 c ia2=mass number of the target p-n01770 // 398 c iz1=atomic number of the projectile p-n01780 // 399 c p-n01790 // 400 c iz2=atomic number of the target p-n01800 // 401 c r01=radius parameter of the projectile p-n01810 // 402 c r01 should be put to 1.000 p-n01820 // 403 c r02=radius parameter of the target p-n01830 // 404 c adif1=diffuseness of the projectile p-n01840 // 405 c adif1 should be put to 1.0000 p-n01850 // 406 c adif2=diffuseness of the target p-n01860 // 407 c p-n01870 // 408 c tlab = incident energy (in mev) p-n01880 // 409 c p-n01890 // 410 c k1=1 reference frame=c.m. of the covering matter p-n01900 // 411 c k1=2 reference frame=c.m. frame of the incident ion and its p-n01910 // 412 c G4intercept p-n01920 // 413 c k1=3 reference frame=c.m. frame of a n-n system with the same p-n01930 // 414 c kinematics as the two ions p-n01940 // 415 c k1=4 reference frame=c.m. frame for the total system p-n01950 // 416 c k1=5 reference frame=lab system p-n01960 // 417 c k1 should be put to 5 in this version p-n01970 // 418 c k2=0 relativistic kinematics p-n01980 // 419 c k2=1 non-relativistic kinematics(abandonned in this version) p-n01990 // 420 c k3=0 deltas are produced p-n02000 // 421 c k3=1 no delta production p-n02010 // 422 c k4=0 the delta is given a vanishing lifetime p-n02020 // 423 c k4=1 the delta has a very large lifetime p-n02030 // 424 c k4=2 the delta has a exponentially random lifetime p-n02040 // 425 c k5=0 no delta-nucleon,delta-delta G4interactions p-n02050 // 426 c k5=1 delta-nucleon=delta-delta=nucleon-nucleon elastic x-section p-n02060 // 427 c k6=0 no angular momentum conservation p-n02070 // 428 c k6=1 angular momentum conservation p-n02080 // Kclst=F(10) Light clusters computed if not =0 // 429 c p-n02090 // 430 c b=impact parameter p-n02100 // 431 c p-n02110 // 432 c rbl(pbl) is the radius in real(momentum) space of the volume p-n02120 // 433 c on which the nucleons are counted to evaluate the pauli p-n02130 // 434 c blocking factors p-n02140 // 435 c recommended values are 2 fm and 200 mev/c respectively p-n02150 // 436 c p-n02160 // 437 c nrun= number of runs (irrelevant here) p-n02170 // 438 c p-n02180 // 439 c ntm=number of G4intermediate times at which the spatial and momentump-n02190 // 440 c distributions are stored (not relevant here) p-n02200 // 441 c p-n02210 // 442 c tem(it)=values of the G4intermediate times p-n02220 // 443 c p-n02230 // 444 c v0=depth of the nucleon potential p-n02240 // 445 c v1=depth of the delta potential p-n02250 // 446 c in this version v1 should be equal to v0 p-n02260 // 447 c (attention! a v0 > 0 corresponds to an attractive potential) p-n02270 // 448 c p-n02280 // 449 c ncase=number of cells necessary to depict the spatial distributionp-n02290 // 450 c in the x and z directions p-n02300 // 451 c p-n02310 // 452 c xp,xg,zp,zg=limits of the box in the x and z directions p-n02320 // 453 c in order to have the same scale in the two directions ,put xg-xp= p-n02330 // 454 c 0.9*(zg-zp) p-n02340 // 455 c dy=dimension of the box in the y direction p-n02350 // 456 c p-n02360 // 457 c rap1,rap2,pp1,pp2=limits of the box in the rapidity-p(perpendicu- p-n02370 // 458 c -lar) space p-n02380 // 459 c the box is divided G4into 15 cells along p(perp) and 40 cells along p-n02390 // 460 c the rapidity p-n02400 // 461 c p-n02410 // 462 c en,sn=average energy carried away by a nucleon,separation energy p-n02420 // 463 c p-n02430 // 464 c (ntm,ncase,xp,...,sn are not used here) // 465 c-----------------------------------------------------------------------p-n02440 // for logging // std::ofstream dumpOut("inclDump.txt"); // end for logging G4int ia_breakup = 0; G4int jparticip[BL1SIZE]; for(G4int i = 0; i < BL1SIZE; i++) { jparticip[i] = 0; } G4double beproj = 0.; bl3->ia2 = calincl->targetA(); // f(1)->f[0] and so on..., calincl added G4int iz2 = calincl->targetZ(); G4double r02 = 1.12; kindstruct->kindf7 = calincl->bulletType(); if(kindstruct->kindf7 < 0) kindstruct->kindf7 = kindstruct->kindf7-1; G4int kclst = calincl->getClusterOption(); // G4cout <<"Projectile kind = " << kindstruct->kindf7 << G4endl; G4int iz1 = 0; G4double fmpinc = 0.0; G4double rms1 = 0.0; G4double pf1 = 0.0; G4double tlab = calincl->bulletE();; if(kindstruct->kindf7 > 0) { bl3->ia1 = ia1t[G4int(kindstruct->kindf7)-1]; // In the C++ version indices start from 0 iz1 = iz1t[G4int(kindstruct->kindf7)-1]; fmpinc = fmpinct[G4int(kindstruct->kindf7)-1]; rms1 = light_gaus_nuc->rms1t[G4int(kindstruct->kindf7)-1]; pf1 = light_gaus_nuc->pf1t[G4int(kindstruct->kindf7)-1]; } else { // Starting values for carbon beams: if(kindstruct->kindf7 == -12) { // Handle Carbon-12 as a special case bl3->ia1 = std::abs(kindstruct->kindf7 + 1); // check here that kindf7 is -a and ia1 is a of the projectile. // write(6,*) 'kindf7,ia1:',kindf7,ia1 be->ia_be=bl3->ia1; iz1=be->iz_be; fmpinc=bl3->ia1*fmp - be->bind_be; rms1=be->rms_be; pf1=be->pms_be; ia_breakup = 10; // Stopping threshold for the cascade in case of light nuclei // ia_breakup=calincl->getCascadeStoppingAThreshold(); } else { // For extended projectiles bl3->ia1 = calincl->extendedProjectileA(); be->ia_be = calincl->extendedProjectileA(); iz1=be->iz_be; fmpinc=bl3->ia1*fmp - be->bind_be; rms1=be->rms_be; pf1=be->pms_be; ia_breakup = 10; // Stopping threshold for the cascade in case of light nuclei // ia_breakup=calincl->getCascadeStoppingAThreshold(); } } if(verboseLevel > 1) { G4cout <<"rms1 = " << rms1 << G4endl; G4cout <<"pf1 = " << pf1 << G4endl; } G4int k2 = 0; G4int k3 = 0; // G4int k3 = 1; // No deltas! G4int k4 = 2; G4int k5 = 1; G4int k6 = 0; // material number: saxw->imat = 0; // espace de phases test (r et p) pour pauli: // valeur recommandee par j.c. v-test=0.589 h**3: // G4double rbl = 2.0; // Valeur pour avoir V-test=2.38 h**3 (avec pbl=200) G4double rbl=3.1848; G4double pbl=200.0; paul->xrr = rbl; paul->xrr2 = (paul->xrr) * (paul->xrr); paul->pr=pbl; paul->pr2 = paul->pr*(paul->pr); G4double tem[10]; tem[0] = 100000.0; // tem(1) -> tem[0] // temfin (time at which the inc is stopped), tmax5 defined after chosing b G4double v0 = calincl->getPotential(); G4double v1 = v0; bl8->rathr = 0.; bl8->ramass = 0.; // constants and derived data bl10->pf = 1.37*hc; G4double tf = std::sqrt(bl10->pf*(bl10->pf)+fmp*fmp)-fmp; G4double g0 = 115.0; G4double th = 0.; G4double pm2 = fmp*fmp; G4int ia = bl3->ia1 + bl3->ia2; G4int a2 = bl3->ia2; bl3->r2 = r02*std::pow(G4double(a2),0.33333333); // parametres moyens de densite de la cible (fermi 2 parametres) if (bl3->ia2 >= 28) { //then ws->r0 = (2.745e-4*bl3->ia2+1.063)*std::pow(G4double(bl3->ia2),0.33333333); ws->adif = 1.63e-4*bl3->ia2 + 0.510; ws->rmaxws = ws->r0 + ws->xfoisa*(ws->adif); } else if(bl3->ia2 >= 19) { //then ws->r0 = light_nuc->r[bl3->ia2-1]; ws->adif = light_nuc->a[bl3->ia2-1]; ws->rmaxws = ws->r0 + ws->xfoisa*(ws->adif); } else if(bl3->ia2>=6) { //then ws->r0 = 1.581*(light_nuc->a[bl3->ia2-1]) * (2.0 + 5.0 * (light_nuc->r[bl3->ia2-1]))/(2.0 + 3.0*(light_nuc->r[bl3->ia2-1])); ws->adif = light_nuc->a[bl3->ia2-1]; ws->rmaxws = 5.5 + 0.3*(double(bl3->ia2) - 6.0)/12.0; } else if(bl3->ia2 >= 2) { // then if(bl3->ia2 == 2) { //then ws->r0 = light_gaus_nuc->rms1t[5]; // rms1t(6) -> rms1t[5] bl10->pf = light_gaus_nuc->pfln[5]; //pfln(6)->pfln[5] tf = light_gaus_nuc->tfln[5]; // tfln(6) -> tfln[5] v0 = light_gaus_nuc->vnuc[5]; // vnuc(6) -> vnuc(5) } //endif if(bl3->ia2 == 3 && iz2 == 1) { //then ws->r0 = light_gaus_nuc->rms1t[6]; //rms1t(7)->rms1t[6] and so on... bl10->pf = light_gaus_nuc->pfln[6]; tf = light_gaus_nuc->tfln[6]; v0 = light_gaus_nuc->vnuc[6]; } //endif if(bl3->ia2 == 3 && iz2 == 2) { //then ws->r0 = light_gaus_nuc->rms1t[7]; //rms1t(8)->rms1t[7] and so on... bl10->pf = light_gaus_nuc->pf1t[7]; tf = light_gaus_nuc->tfln[7]; v0 = light_gaus_nuc->vnuc[7]; } //endif if(bl3->ia2 == 4) { //then ws->r0 = light_gaus_nuc->rms1t[8]; // rms1t(9) -> rms1t[8] and so on... bl10->pf = light_gaus_nuc->pf1t[8]; tf = light_gaus_nuc->tfln[8]; v0 = light_gaus_nuc->vnuc[8]; } //endif v1 = v0; ws->adif = 0.57735*(ws->r0); ws->rmaxws = ws->r0+2.5; } // end if if(ws->nosurf > 0) { //then ws->adif=0.0; ws->rmaxws=ws->r0; } //end if ws->drws = ws->rmaxws/29.0; // on impose le rayon du noyau: // ....voir coherence function wsax(r) et derivwsax(r) bl3->r2 = ws->r0; if(verboseLevel > 3) { G4cout <<"Radius bl3->r2 = " << bl3->r2 << G4endl; } G4double tnr = tlab; G4double binc = std::sqrt(tnr*tnr + 2.0*tlab*fmpinc)/(tnr+fmpinc); G4double ginc = 1.0/std::sqrt(1.0 - binc*binc); G4double pinc = fmpinc*binc*ginc; for(G4int bli = 0; bli < BL1SIZE; bli++) { bl1->eps[bli] = 0.0; bl1->p1[bli] = 0.0; bl1->p2[bli] = 0.0; bl1->p3[bli] = 0.0; q1[bli] = 0.0; q2[bli] = 0.0; q3[bli] = 0.0; q4[bli] = 0.0; } // skip initialisations G4double efrun = 0.0; G4int iavat = 0; // generation of the initial distribution in the rest frame of the iop-n03870 // surface // 700 c bmax=r2+2.2*adif // 701 c r2i=(r2-2.2*adif) // 702 c r2s=(r2+2.2*adif) // 703 c ********** // 704 ws->bmax = ws->rmaxws; // maximum extension of the nucleus ( w.s.) // fin surface (que faire aux pions ?) // 709 c if (kindf7.gt.2) bmax=r2+2.2 // 710 c if (kindf7.gt.2) bmax=bmax ! a.b. (avec w.s., idem les nucleons) // deutons cv 22/01/2001 if (kindstruct->kindf7 < 6 && kindstruct->kindf7 > 0) { //then ws->bmax = ws->bmax; // comme alain } else { beproj = fmpinc - bl3->ia1*fmp; ws->bmax = ws->rmaxws + rms1; // maximum extension of the nucleus ( w.s.) } // deutons G4double al; standardRandom(&al, &(hazard->ial)); G4double b = std::sqrt(al)*(ws->bmax); G4double bred = b/bl3->r2; //G4double bimpact=b; bimpact = b; G4double tnor = 0.0; if(ws->nosurf != -2) { // la suite, c'est la version temps avant 2001 if(ws->nosurf <= 0) { tnor = 70.0/30.6349; } // PK endif removed else { tnor=1.; } //endif if(ws->nosurf == 0) { bred = 0.; } if (kindstruct->kindf7 <= 2 && kindstruct->kindf7 > 0) { if (tlab < 400.0) { cb0 = 6.86 - 0.0035 * tlab; eb0 = 0.32 - 0.00005 * tlab; } else { if (tlab < 1000.0) { //then cb0 = 5.23 + 0.000575 * tlab; eb0 = 0.32 - 0.00005 * tlab; } else { cb0 = 5.73 + 0.00007 * tlab; eb0 = 0.283 - 0.000013 * tlab; } } temfin = 1.25*cb0/amax1(1.0,0.854 + 0.438*bred)*std::pow(G4double(bl3->ia2),(eb0/amax1(1.0,0.941+0.177*bred))); temfin = temfin*tnor; } else { if (kindstruct->kindf7 < 6 && kindstruct->kindf7 > 0) { // here for pions: temfin = 30.0*std::pow((float(bl3->ia2)/208.0),0.25)*(1.0 - 0.2*bred)*(1.0 - tlab/1250.0); // correction for pions in the case nosurf=0 or -1 (a.b., c.v. 2/2002) temfin = temfin*tnor; } else { // deutons tlabu = tlab/double(bl3->ia1); if (tlabu <= 400) { coeffb0 = -0.0035*tlabu + 6.86; expob0 = -0.00005*tlabu + 0.32; } else { if (tlabu <= 1000) { //then coeffb0 = 0.000575*tlabu + 5.23; expob0 = -0.00005*tlabu + 0.32; } else { coeffb0 = 0.00007*tlabu + 5.73; expob0 = -0.000013*tlabu + 0.283; } } if (bred <= 0.33333) { xc = 1.0; xe = 1.0; } else { xc = 0.438*bred + 0.854; xe = 0.177*bred + 0.941; } temfin = 1.25*(coeffb0/xc)*std::pow(G4double(bl3->ia2),(expob0/xe)); // same renormalisation of time for p,n and composit particles. temfin = temfin*tnor; } } } else { //ici,nosurf=-2 c'est la fonction temps 2001 (avec surface). if(kindstruct->kindf7 >= 3 && kindstruct->kindf7 <= 5) { // here for pions (arbitrary multiplied by 2 for surface) (a.b., c.v.) 2/2002: // temfin=60.*(float(ia2)/208.)**0.25*(1.-0.2*bred)*(1.-tlab/1250.) // modified in april 2003 (more reasonable but not yet checked!) // temfin = 25.5*std::pow(G4double(bl3->ia2),0.16); // pb208->60fm/c // c modified in June 2005 (function of A and TLAB) temfin = 30.18*std::pow(bl3->ia2,0.17)*(1.0-5.7*std::pow(10.0,(-5))*tlab); } else { // here for other hadrons temfin = 29.8*std::pow(G4double(bl3->ia2),0.16); // pb208->70fm/c } } // deutons // a way to change stopping time f[5] not used here factemp = calincl->getTimeScale(); // attention !!! 30/04/2001 scaling time is now a multiplication factor temfin = temfin*factemp; exi = 0.0; nbquit = 0; iqe = 0; idecf = 0; bl4->tmax5 = temfin+0.1; npion = 0; efer = 0.0; // deutons if (bl3->ia1 > 1) { goto pnu7; } // deutons if (bl3->ia1 == 1) { //then // bl5->nesc[0] = 0; // nesc(1)->nesc[0] and so on... bl5->nesc[1] = 0; // bl1->ind2[0] = 2*iz1 - 1; bl1->ind2[1] = 2*iz1 - 1; bl1->ind1[1] = 0; bl3->x1[1] = 0.0; bl3->x2[1] = 0.0; bl3->x3[1] = 0.0; bl1->p1[1] = 0.0; bl1->p2[1] = 0.0; bl1->p3[1] = 0.0; bl9->hel[0] = 0.0; bl9->hel[1] = 0.0; jparticip[0] = 0; jparticip[1] = 1; } else { npion = 1; if(kindstruct->kindf7 == -666) { // Extended projectile... ipi[1] = 8 - 2*be->ia_be; } else { ipi[1] = 8 - 2*(kindstruct->kindf7); } y1[1] = 0.0; y2[1] = 0.0; y3[1] = 0.0; q1[1] = 0.0; q2[1] = 0.0; q3[1] = 0.0; q4[1] = fmpi; } // deutons goto pnu9; // 850 pnu7: // G4cout <<"(checkpoint 'pnu7)" << G4endl; if(kindstruct->kindf7 == 6) { // Deuteron gaussianRandom(&xga); bl3->x1[1] = xga*rms1*0.5775; gaussianRandom(&xga); bl3->x2[1] = xga*rms1*0.5775; gaussianRandom(&xga); bl3->x3[1] = xga*rms1*0.5775; bl3->x1[2] = -bl3->x1[1]; bl3->x2[2] = -bl3->x2[1]; bl3->x3[2] = -bl3->x3[1]; // Deuteron density from Paris potential in q space: standardRandom(&xq, &(hazard->igraine[9])); qdeut = splineab(xq) * 197.3289; standardRandom(&u, &(hazard->igraine[11])); cstet = u * 2 - 1; sitet = std::sqrt(1.0 - std::pow(cstet, 2)); standardRandom(&v, &(hazard->igraine[11])); phi = 2.0 * 3.141592654 * v; bl1->p1[1] = qdeut * sitet * std::cos(phi); bl1->p2[1] = qdeut * sitet * std::sin(phi); bl1->p3[1] = qdeut * cstet; bl1->eps[1] = w(bl1->p1[1], bl1->p2[1], bl1->p3[1], fmp); bl1->p1[2] = - bl1->p1[1]; bl1->p2[2] = - bl1->p2[1]; bl1->p3[2] = - bl1->p3[1]; bl1->eps[2] = bl1->eps[1]; // bl1->eps[2] = w(bl1->p1[2], bl1->p2[2], bl1->p3[2], fmp); jparticip[1] = 1; bl9->hel[1] = 0; bl5->nesc[1] = 0; bl1->ind2[1] = 1; bl1->ind1[1] = 0; jparticip[2] = 1; bl9->hel[2] = 0; bl5->nesc[2] = 0; bl1->ind2[2] = -1; bl1->ind1[2] = 0; } else { // Composite heavier than a deuteron s1t1 = 0.0; s2t1 = 0.0; s3t1 = 0.0; sp1t1 = 0.0; sp2t1 = 0.0; sp3t1 = 0.0; G4double sei = 0.0; bl9->hel[0] = 0; bl5->nesc[0] = 0; for(G4int i = 1; i <= bl3->ia1; i++) { bl9->hel[i] = 0; bl5->nesc[i] = 0; bl1->ind2[i] = 1; if(i > iz1) { bl1->ind2[i] = -1; } bl1->ind1[i] = 0; jparticip[i] = 1; gaussianRandom(&xga); bl3->x1[i] = xga * rms1 * 0.57735; s1t1 = s1t1 + bl3->x1[i]; gaussianRandom(&xga); bl3->x2[i] = xga * rms1 * 0.57735; s2t1 = s2t1 + bl3->x2[i]; gaussianRandom(&xga); bl3->x3[i] = xga * rms1 * 0.57735; s3t1 = s3t1 + bl3->x3[i]; G4int igaussfermi = 2; if(igaussfermi == 1) { // Gaussian // Density of composite as a gaussian in q // space: gaussianRandom(&xga); bl1->p1[i] = xga * pf1 * 0.57735; gaussianRandom(&xga); bl1->p2[i] = xga * pf1 * 0.57735; gaussianRandom(&xga); bl1->p3[i] = xga * pf1 * 0.57735; } else { // Fermi // Density of composite as a Fermi sphere in q space: for(int iloc=1; iloc <= 3; iloc++) { standardRandom(&t[iloc],&(hazard->igraine[11])); } t[2]=-1+2.*t[2]; t[3]=6.283185*t[3]; t2=t[2]; t3=std::sqrt(1.-t2*t2); t4=std::cos(t[3]); t5=std::sin(t[3]); y=fermi->pf*std::pow(t[1],0.33333333); bl1->p1[i]=y*t3*t4; bl1->p2[i]=y*t3*t5; bl1->p3[i]=y*t2; } bl1->eps[i] = w(bl1->p1[i], bl1->p2[i], bl1->p3[i], fmp); sei = sei + bl1->eps[i]; if(verboseLevel > 1) { G4cout <<"projectile nucleon = " << i << G4endl; G4cout <<"x1 = " << bl3->x1[i] << G4endl; G4cout <<"x2 = " << bl3->x2[i] << G4endl; G4cout <<"x3 = " << bl3->x3[i] << G4endl; G4cout <<"p1 = " << bl1->p1[i] << G4endl; G4cout <<"p2 = " << bl1->p2[i] << G4endl; G4cout <<"p3 = " << bl1->p3[i] << G4endl; G4cout <<"eps = " << bl1->eps[i] << G4endl; } sp1t1 = sp1t1 + bl1->p1[i]; sp2t1 = sp2t1 + bl1->p2[i]; sp3t1 = sp3t1 + bl1->p3[i]; } s1t1 = s1t1/double(bl3->ia1); s2t1 = s2t1/double(bl3->ia1); s3t1 = s3t1/double(bl3->ia1); sp1t1 = sp1t1/double(bl3->ia1); sp2t1 = sp2t1/double(bl3->ia1); sp3t1 = sp3t1/double(bl3->ia1); sei = 0.0; for(G4int i = 1; i <= bl3->ia1; i++) { bl3->x1[i] = bl3->x1[i] - s1t1; bl3->x2[i] = bl3->x2[i] - s2t1; bl3->x3[i] = bl3->x3[i] - s3t1; bl1->p1[i] = bl1->p1[i] - sp1t1; bl1->p2[i] = bl1->p2[i] - sp2t1; bl1->p3[i] = bl1->p3[i] - sp3t1; bl1->eps[i] = w(bl1->p1[i], bl1->p2[i], bl1->p3[i], fmp); sei = sei + bl1->eps[i]; } v_proj = 0.0; if(bl3->ia1 > 4) v_proj = (sei - fmpinc)/bl3->ia1; // bl1->dump(26); // bl3->dump(); // G4cout <<"(checkpoint 'endheavyprojinit)" << G4endl; } // End of: Composites heavier than deuteron pnu9: // continue // G4cout <<"(checkpoint 'pnu9)" << G4endl; // deutons // target preparation for 1 < a < 5 (with sum of momentum =0) if(bl3->ia2 >= 2 && bl3->ia2 <= 4) { pnu1633: s1t1 = 0.0; s2t1 = 0.0; s3t1 = 0.0; sp1t1 = 0.0; sp2t1 = 0.0; sp3t1 = 0.0; efer = 0.0; for(G4int i = bl3->ia1+1; i <= ia; i++) { // for(G4int i = bl3->ia1; i < ia-1; i++) { // for(G4int i = bl3->ia1; i < ia; i++) { bl1->ind2[i] = 1; bl5->nesc[i] = 0; if (i > (iz2+bl3->ia1)) { bl1->ind2[i] = -1; } for(G4int j = 0; j < 7; j++) { standardRandom(&t[j], &(hazard->ial)); } t[1] = -1.0 + 2.0*t[1]; // t(2)->t[1] t[2] = 6.283185*t[2]; // t(3)->t[2] t[4] = -1.0 + 2.0*t[4]; // t(5)->t[4] t[5] = 6.283185*t[5]; // t(6) -> t[5] t1 = t[1]; // t(2)->t[1] t2 = std::sqrt(1.0 - t1*t1); t3 = std::cos(t[2]); //t(3)->t[2] t4 = std::sin(t[2]); //t(3)->t[2] t5 = t[4]; // t(5)->t[4] t6 = std::sqrt(1.0 - t5*t5); t7 = std::cos(t[5]); //t(6) -> t[5] t8 = std::sin(t[5]); // t(6)->t[5] if (ws->nosurf == 1) { x = bl3->r2*std::pow(t[0],0.33333333); // t(1)->t[0] y = (bl10->pf)*std::pow(t[3],0.33333333); // t(4)->t[3] } else { // surface..w.s.: impulsion (sphere dure), puis r(q) t33 = std::pow(t[6],0.33333333); // t(7)->t[6] y = (bl10->pf)*t33; rr = interpolateFunction(t33); x = rr*std::pow(t[3],0.33333333); // t(4)->t[3] // fin surface on a redefini x et y } bl3->x1[i] = x*t2*t3; bl3->x2[i] = x*t2*t4; bl3->x3[i] = x*t1; s1t1 = s1t1 + bl3->x1[i]; s2t1 = s2t1 + bl3->x2[i]; s3t1 = s3t1+bl3->x3[i]; bl1->p1[i] = y*t6*t7; bl1->p2[i] = y*t6*t8; bl1->p3[i] = y*t5; sp1t1 = sp1t1+bl1->p1[i]; sp2t1 = sp2t1+bl1->p2[i]; sp3t1 = sp3t1+bl1->p3[i]; bl1->ind1[i] = 0; bl1->eps[i] = w(bl1->p1[i],bl1->p2[i],bl1->p3[i],fmp); bl9->hel[i] = 0.0; efer = efer + bl1->eps[i] - fmp; } bl9->hel[ia] = 0; bl5->nesc[ia] = 0; bl1->ind2[ia] = -1; bl1->ind1[ia] = 0; bl3->x1[ia] = -s1t1; bl3->x2[ia] = -s2t1; bl3->x3[ia] = -s3t1; bl1->p1[ia] = -sp1t1; bl1->p2[ia] = -sp2t1; bl1->p3[ia] = -sp3t1; p_mod = std::sqrt(std::pow(bl1->p1[ia],2) + std::pow(bl1->p2[ia],2) + std::pow(bl1->p3[ia],2)); if(p_mod > ((bl10->pf)+0.05)) { goto pnu1633; } bl1->eps[ia] = w(bl1->p1[ia],bl1->p2[ia],bl1->p3[ia],fmp); efer = efer + bl1->eps[ia]-fmp; } //end if !(bl3->ia2 >= 2 && bl3->ia2 <= 4) // target preparation for a > 4 if(bl3->ia2 > 4) { x1_target = 0.0; x2_target = 0.0; x3_target = 0.0; for(G4int i = bl3->ia1+1; i <= ia; i++) { //do 1 i=bl3->ia1+1,ia bl5->nesc[i] = 0; bl1->ind2[i] = 1; if (i > (iz2+bl3->ia1)) { bl1->ind2[i] = -1; } // surface ajout de t(7) surface.f avait do 6 j=2,7 ici 1,6 ? for(G4int j = 0; j < 7; j++) { standardRandom(&t[j], &(hazard->ial)); } // pnu6: // continue t[1] = -1.0 + 2.0*t[1]; //t(2)->t[1] t[2] = 6.283185*t[2]; t[4] = -1.0 + 2.0*t[4]; // t(5)->t[4] t[5] = 6.283185*t[5]; //t(6)->t[5] t1 = t[1]; // t(2)->t[1] t2 = std::sqrt(1.0 - t1*t1); t3 = std::cos(t[2]); //t(3)->t[2] t4 = std::sin(t[2]); //t(3)->t[2] t5 = t[4]; //t(5)->t[4] t6 = std::sqrt(1.0 - t5*t5); t7 = std::cos(t[5]); //t(6)->t[5] t8 = std::sin(t[5]); // t(6)->t[5] if (ws->nosurf == 1) { x = bl3->r2*std::pow(t[0],0.33333333); // t(1)->t[0] y = bl10->pf*std::pow(t[3],0.33333333); // t(4)->t3 } else { // surface..w.s.: impulsion (sphere dure), puis r(q) t33 = std::pow(t[6],0.33333333); // t(7)->t[6] y=bl10->pf*t33; rr=interpolateFunction(t33); x=rr*std::pow(t[3],0.33333333); // t(4)->t[3] // fin surface on a redefini x et y } bl3->x1[i] = x*t2*t3; bl3->x2[i] = x*t2*t4; bl3->x3[i] = x*t1; bl1->p1[i] = y*t6*t7; bl1->p2[i] = y*t6*t8; bl1->p3[i] = y*t5; x1_target = x1_target + bl3->x1[i]; x2_target = x2_target + bl3->x2[i]; x3_target = x3_target + bl3->x3[i]; bl1->ind1[i] = 0; bl1->eps[i] = w(bl1->p1[i],bl1->p2[i],bl1->p3[i],fmp); bl9->hel[i] = 0.0; efer = efer + bl1->eps[i] - fmp; } x1_target = x1_target/double(bl3->ia2); x2_target = x2_target/double(bl3->ia2); x3_target = x3_target/double(bl3->ia2); } efrun = efrun + efer; // location of incident particle at point (b,z) r22 = bl3->r2*(bl3->r2); z = ws->bmax * (ws->bmax) - b*b; // for the wood-saxon density... if (z < 0.0) { z=0.0; } z = std::sqrt(z); // random azimuthal direction of the impact parameter (sept 99) if (kindstruct->kindf7 <= 2 && kindstruct->kindf7 > 0) { standardRandom(&tbid, &(hazard->igraine[13])); tbid = tbid*6.283185; bl3->x1[1] = bl3->x1[1] + b*std::cos(tbid); //x1(1)->x1[1] bl3->x2[1] = bl3->x2[1] + b*std::sin(tbid); //x2(1)->x2[1] bl3->x3[1] = bl3->x3[1] - z; // Counter of p(n) entering the potential 4/2008 AB if(bl1->ind2[1] == 1) { // then npenter=1; nnenter=0; } else { npenter=0; nnenter=1; } // endif // pour le ntuple des avatars: if(varavat->kveux == 1) { varavat->r1_in[0] = bl3->x1[1]; //r1_in(1)->r1_in[0] and x1(1)->x1[0] varavat->r1_in[1] = bl3->x2[1]; //r1_in(2)->r1_in[1] and x1(2)->x1[1] varavat->r1_in[2] = bl3->x3[1]; //r1_in(3)->r1_in[2] and x1(3)->x1[2] } //endif } else { if (kindstruct->kindf7 < 6 && kindstruct->kindf7 > 0) { //then ! pour les pions on laisse //call standardRandom(tbid,iy14) standardRandom(&tbid, &(hazard->igraine[13])); tbid = tbid*6.283185; y1[1] = y1[1] + b*std::cos(tbid); //y1(1)->y1[0] y2[1] = y2[1] + b*std::sin(tbid); //y2(1)->y2[0] y3[1] = y3[1] - z; } else { // deutons //nmiss=0.; nmiss = 0; xlengm=1000.0; for(G4int i = 1; i <= bl3->ia1; i++) { // for(G4int i = 1; i < bl3->ia1; i++) { bl3->x3[i] = bl3->x3[i]/ginc; zai2 = ws->rmaxws*(ws->rmaxws) - std::pow((b+bl3->x1[i]),2) - std::pow(bl3->x2[i],2); if (zai2 < 0.0) { goto pnu22; } ztu = -std::sqrt(zai2); // r22 remplace par rmaxws*rmaxws et r2 par rmaxws cv correct ? za_i = 2.0*(ws->rmaxws) + ztu; xleng = za_i - bl3->x3[i]; if (xleng > xlengm) { // goto pnu21; continue; } ilm = i; xlengm = xleng; ztouch = ztu; // goto pnu21; continue; pnu22: nmiss = nmiss + 1; } // pnu21: if (nmiss == bl3->ia1) { //then // G4cout <<"(checkpoint 'projectilemissedtarget)" << G4endl; nopart = -1; // return; if(verboseLevel > 3) { G4cout <<"nmiss == bl3->ia1" << G4endl; G4cout <<"End of algorithm after pnu21." << G4endl; } goto pnureturn; } else { // Counter of p(n) entering the potential 4/2008 AB if(bl1->ind2[ilm]==1) { //then npenter=1; nnenter=0; } else { npenter=0; nnenter=1; } // endif zshif = bl3->x3[ilm] - ztouch; standardRandom(&tbid, &(hazard->igraine[13])); tbid = tbid*6.283185; for(G4int i = 1; i <= bl3->ia1; i++) { xxx = bl3->x1[i] + b; bl3->x1[i] = xxx*std::cos(tbid) - bl3->x2[i]*std::sin(tbid); bl3->x2[i] = xxx*std::sin(tbid) + bl3->x2[i]*std::cos(tbid); bl3->x3[i] = bl3->x3[i] - zshif; } if (std::fabs(std::pow(bl3->x1[ilm],2)+std::pow(bl3->x2[ilm],2)+std::pow(bl3->x3[ilm],2)-ws->rmaxws*(ws->rmaxws)) > 0.01) { if(verboseLevel > 2) { G4cout <<"wrong position" << G4endl; } } } } } // for rho(r),rho(q) checking #ifdef G4INCLDEBUG for(G4int rho_i = bl3->ia1 + 1; rho_i <= ia; rho_i++) { // DO I=IA1+1,IA G4double r_dist = std::sqrt(bl3->x1[rho_i] * bl3->x1[rho_i] + bl3->x2[rho_i] * bl3->x2[rho_i] + bl3->x3[rho_i] * bl3->x3[rho_i]); G4double p_mod = std::sqrt(std::pow(bl1->p1[rho_i],2)+std::pow(bl1->p2[rho_i],2) + std::pow(bl1->p3[rho_i],2)); theLogger->fillHistogram1D("r_distrib", r_dist); theLogger->fillHistogram1D("p_distrib", p_mod); theLogger->fillHistogram2D("r-p_correl", r_dist, p_mod); } #endif // initial momentum for all type of incident particles: xl1 = b*pinc*std::sin(tbid); xl2 = -b*pinc*std::cos(tbid); xl3 = 0.0; // transcription in the general frame of reference // (here,=lab frame) bevar = 0.0; ge = 1.0; b1 = (binc - bevar)/(1.0 - bevar*binc); b2 = -bevar; g1 = 1.0/std::sqrt(1.0 - b1*b1); g2 = 1.0; // deutons // here for nucleons if (kindstruct->kindf7 <= 2 && kindstruct->kindf7 > 0) { bl1->eps[1] = g1*fmp + v0; bl1->p3[1] = std::sqrt(std::pow(bl1->eps[1],2) - std::pow(fmp,2)); } else { // here for pions if (kindstruct->kindf7 < 6 && kindstruct->kindf7 > 0) { //then q4[1] = g1*fmpi; // q4(1)->q4[0] q3[1] = b1*q4[1]; } else { // Composite projectiles // here for composite projectiles: // the kinetic energy is below the threshold. put all // fermi momentum to 0... projectile nucleons not on shell! energie_in = tlab + fmpinc; if((energie_in) <= (bl3->ia1*fmp)) { for(G4int i = 1; i <= bl3->ia1; i++) { bl1->eps[i] = energie_in/double(bl3->ia1); bl1->p1[i] = 0.0; bl1->p2[i] = 0.0; bl1->p3[i] = pinc/double(bl3->ia1); } goto pnu1871; } // here the composit is above threshold for(G4int i = 1; i <= bl3->ia1; i++) { //do i=1,bl3->ia1 !save e,p in the composit rest frame qvp->t_c[i] = bl1->eps[i] - fmp; bl1->eps[i] = bl1->eps[i] - v_proj; qvp->eps_c[i] = bl1->eps[i]; qvp->p3_c[i] = bl1->p3[i]; } //enddo nbtest = bl3->ia1 - 1; if(kindstruct->kindf7 == 6) { nbtest = 2; } iflag = 0; pnu1870: // G4cout <<"(checkpoint 'pnu1870)" << G4endl; sueps = 0.0; iflag = iflag + 1; for(G4int i = 1; i <= bl3->ia1; i++) { //do i=1,bl3->ia1 tte = qvp->eps_c[i]; bl1->eps[i] = g1*(qvp->eps_c[i] + b1*qvp->p3_c[i]); bl1->p3[i] = g1*(b1*tte + qvp->p3_c[i]); sueps = sueps + bl1->eps[i]; } //enddo goto pnu987; // With a potential for the projectile it is nonsens to search for // nucleons ON shell 31/05/2010. cobe = (tlab + fmpinc)/sueps; // off shell problem for incident clusters (a.b. 2/2002) if(iflag == nbtest) { // too much..all momentum to 0 for(G4int klm = 1; klm <= bl3->ia1; klm++) { //do klm=1,bl3->ia1 qvp->eps_c[klm] = fmp; bl1->p1[klm] = 0.0; bl1->p2[klm] = 0.0; qvp->p3_c[klm] = 0; } goto pnu1870; } for(G4int i = 1; i <= bl3->ia1; i++) { //do i=1,bl3->ia1 arg = std::pow((cobe*(bl1->eps[i])),2)-pm2; if (arg <= 0.) { //then ! put maximum momentum to 0. i_emax = 1; // !find maximum ener_max = bl1->eps[1]; for(G4int klm = 2; klm <= bl3->ia1; klm++) { //do klm=2,bl3->ia1 if(bl1->eps[klm] > ener_max) { ener_max = bl1->eps[klm]; i_emax = klm; } } qvp->eps_c[i_emax] = fmp; bl1->p1[i_emax] = 0.0; bl1->p2[i_emax] = 0.0; qvp->p3_c[i_emax] = 0.0; if(i_emax == bl3->ia1) { // circular permut if the last one epsv = qvp->eps_c[bl3->ia1]; // permutation circulaire p1v = bl1->p1[bl3->ia1]; p2v = bl1->p2[bl3->ia1]; p3v = qvp->p3_c[bl3->ia1]; for(bl2->k = bl3->ia1-1; bl2->k >= 1; bl2->k = bl2->k - 1) { //do k=bl3->ia1-1,1,-1 qvp->eps_c[bl2->k+1] = qvp->eps_c[bl2->k]; bl1->p1[bl2->k+1] = bl1->p1[bl2->k]; bl1->p2[bl2->k+1] = bl1->p2[bl2->k]; qvp->p3_c[bl2->k+1] = qvp->p3_c[bl2->k]; } qvp->eps_c[1] = epsv; bl1->p1[1] = p1v; bl1->p2[1] = p2v; qvp->p3_c[1] = p3v; // fin permut. } sp1t1 = 0.0; // re-compute the last one sp2t1 = 0.0; sp3t1 = 0.0; for(G4int j = 1; j <= bl3->ia1-1; j++) { //do j=1,bl3->ia1-1 sp1t1 = sp1t1 + bl1->p1[j]; sp2t1 = sp2t1 + bl1->p2[j]; sp3t1 = sp3t1 + qvp->p3_c[j]; } bl1->p1[bl3->ia1] = -sp1t1; bl1->p2[bl3->ia1] = -sp2t1; qvp->p3_c[bl3->ia1] = -sp3t1; qvp->eps_c[bl3->ia1] = w(bl1->p1[bl3->ia1],bl1->p2[bl3->ia1],qvp->p3_c[bl3->ia1],fmp); goto pnu1870; // ..and boost all of them. } } for(G4int i = 1; i <= bl3->ia1; i++) { //do i=1,bl3->ia1 // for(G4int i = 1; i < bl3->ia1; i++) { //do i=1,bl3->ia1 arg = std::pow((cobe*(bl1->eps[i])),2) - pm2; comom = std::sqrt(arg/(std::pow(bl1->eps[i],2) - pm2)); bl1->p1[i] = comom*(bl1->p1[i]); bl1->p2[i] = comom*(bl1->p2[i]); bl1->p3[i] = comom*(bl1->p3[i]); bl1->eps[i] = bl1->eps[i]*cobe; if (std::fabs(am(bl1->p1[i],bl1->p2[i],bl1->p3[i],bl1->eps[i])-fmp) > 0.01) { if(verboseLevel > 2) { G4cout <<"wrong correction " << i << G4endl; } } } bl1->eps[ilm] = bl1->eps[ilm] + v0; pnu987: // G4cout <<"(checkpoint 'pnu987)" << G4endl; // ici sauvegarde des energies et impulsions des nucleons du projectile i.l.: // (hors potentiel) for(G4int i = 1; i <= bl3->ia1; i++) { qvp->eps_c[i]=bl1->eps[i]; qvp->p1_s[i]=bl1->p1[i]; qvp->p2_s[i]=bl1->p2[i]; qvp->p3_s[i]=bl1->p3[i]; } // first particle entering in the target potential: bl1->eps[ilm]=bl1->eps[ilm]+v0; // correction en test 16/04/2009 (pourquoi pas la correction aussi de l'impulsion // comme pour un nucleon in ???? ....on essaye de traiter les nucleons hors couche?) // 29/4/2009: je pense que c'est une erreur et je transforme aussi maintenant l'impulsion: var_ab = std::pow(bl1->p1[ilm],2) + std::pow(bl1->p2[ilm],2) + std::pow(bl1->p3[ilm],2); if(var_ab > 0.) { gpsg=std::sqrt((std::pow(bl1->eps[ilm],2) -fmp*fmp)/var_ab); } bl1->p1[ilm]=bl1->p1[ilm]*gpsg; bl1->p2[ilm]=bl1->p2[ilm]*gpsg; bl1->p3[ilm]=bl1->p3[ilm]*gpsg; } // For pion-in } // For nucleon-in pnu1871: // G4cout <<"(checkpoint 'pnu1871)" << G4endl; // bl1->dump(27); // bl3->dump(); // randomGenerator->printSeeds(); // evaluation of the times t(a,b) bl2->k = 0; kcol = 0; if (kindstruct->kindf7 <= 2 && kindstruct->kindf7 > 0) { // modif s.vuillier tient compte propagation projectile,1e collision // imposee pour lui (c'est une maniere de faire!!) G4int ioldk = 0; for(G4int i = 1; i <= ia; i++) { //do 40 i=1,ia ioldk = bl2->k; // bl2->k = bl2->k + 1; // tref=ref(x1(i),x2(i),x3(i),p1(i),p2(i),p3(i),eps(i),r22) p-n04740 tref = ref(bl3->x1[i], bl3->x2[i], bl3->x3[i], bl1->p1[i], bl1->p2[i], bl1->p3[i], bl1->eps[i], r22); if (tref > bl4->tmax5) { goto pnu45; } bl2->k = bl2->k + 1; bl2->crois[bl2->k]=tref; bl2->ind[bl2->k]=i; bl2->jnd[bl2->k]=-1; pnu45: i1=i-1; if (i == 1) { //goto pnu40; continue; } // 1326 c ici on ne calcule que les G4interactions nn impliquant le projectile !!! (2/02) if (i1 > bl3->ia1) { i1=bl3->ia1; } for(G4int j = 1; j <= i1; j++) { //do 41 j=1,i1 // no collisions before the first collision of the incident particle time (i, j); if (bl1->ta < 0.0) { continue; } if(bl1->ta > bl4->tmax5) { continue; } eij=am(bl1->p1[i]+bl1->p1[j],bl1->p2[i]+bl1->p2[j],bl1->p3[i]+bl1->p3[j],bl1->eps[i]+bl1->eps[j]); if (eij < 1925.0) { continue; } isos=bl1->ind2[i]+bl1->ind2[j]; if (31.0*(bl3->rab2) > totalCrossSection(eij,0,isos)) { continue; } bl2->k = bl2->k + 1; if (j == 1) { kcol = kcol + 1; } bl2->crois[bl2->k]=bl1->ta; bl2->ind[bl2->k]=i; bl2->jnd[bl2->k]=j; } if(verboseLevel > 3) { if(bl2->k == (ioldk + 2)) { if(verboseLevel > 2) { G4cout <<"bl2->k incremented twice!" << G4endl; } } } } } else { // deutons if (kindstruct->kindf7 < 6 && kindstruct->kindf7 > 0) { //then // here for incoming pions: for(G4int i = bl3->ia1+1; i <= ia; i++) { //do i=ia1+1,ia tref = ref(bl3->x1[i], bl3->x2[i], bl3->x3[i], bl1->p1[i], bl1->p2[i], bl1->p3[i], bl1->eps[i], r22); if (tref < bl4->tmax5) { bl2->k = bl2->k + 1; bl2->crois[bl2->k] = tref; bl2->ind[bl2->k] = i; bl2->jnd[bl2->k] = -1; } } new2(y1[1], y2[1], y3[1], q1[1], q2[1], q3[1], q4[1], 1, 0); // modif a.b. 21/06/2002: should check at least one valid collision // 1361 c with incoming pion. // 1362 c kcol=1 if(bl2->k != 0) { kcol = 1; } } else { // Counting the spectators and transparents of composit projectiles: // G4cout <<"(checkpoint 'setipszero1)" << G4endl; ips=0; nb_transprojo=0; for(G4int i = 1; i <= bl3->ia1; i++) { //do 38 i=1,ia1 bl5->nesc[i] = 1; // Spectators of composite projectiles (7/2006, AB) // Pour garder trace des spectateurs du projectile: npproj[i]=1; if (i != ilm) { goto pnu36; } tref = ref(bl3->x1[i], bl3->x2[i], bl3->x3[i], bl1->p1[i], bl1->p2[i], bl1->p3[i], bl1->eps[i], r22); if(verboseLevel > 3) { if(tref < 0.0) { if(verboseLevel > 2) { G4cout <<"G4Incl: Reflection time < 0! (line 2579)" << G4endl; } } } bl5->nesc[i] = 0; npproj[i] = 0; goto pnu37; pnu36: // G4cout <<"(checkpoint 'pnu36)" << G4endl; t1 = bl3->x1[i]*(bl1->p1[i])+bl3->x2[i]*(bl1->p2[i])+bl3->x3[i]*(bl1->p3[i]); t2 = bl1->p1[i]*(bl1->p1[i])+bl1->p2[i]*(bl1->p2[i])+bl1->p3[i]*(bl1->p3[i]); t3 = t1/t2; t4 = bl3->x1[i]*(bl3->x1[i])+bl3->x2[i]*(bl3->x2[i])+bl3->x3[i]*(bl3->x3[i]); // 1379 c incoming nucleons enter potential at maximum radius (modif. 13/06/01) t5 = t3*t3 + ((ws->rmaxws)*(ws->rmaxws) - t4)/t2; if (t5 < 0.) { // this is a projectile spectator: // G4cout <<"(checkpoint 'incripspnu36)" << G4endl; ips=ips+1; isPartOfSpectatorNucleus[i] = true; ps->n_projspec[ips] = i; continue; //goto pnu38; } // endif if(verboseLevel > 3) { G4cout <<"x1 = " << bl3->x1[i] <<" x2 = " << bl3->x2[i] <<" x3 = " << bl3->x3[i] << G4endl; G4cout <<"t1 = " << t1 << G4endl; G4cout <<"t2 = " << t2 << G4endl; G4cout <<"t3 = " << t3 << G4endl; G4cout <<"t4 = " << t4 << G4endl; G4cout <<"rmaxws = " << ws->rmaxws << G4endl; G4cout <<"t5 = " << t5 << G4endl; } // if (t5 < 0.) { // ips++; // ps->n_projspec[ips] = i; // continue; // } tref = (-1.0*t3 - std::sqrt(t5))*(bl1->eps[i]); // Drop reflection avatars with too large tref and the ones // with negative tref (spectator, outside the nucleus) // if (tref > bl4->tmax5 || tref <= 0.0) { // continue; // } if (tref > bl4->tmax5) { //then // This is also a projectile spectator: ips=ips+1; ps->n_projspec[ips] = i; continue; // go to 38 } // endif // Test to avoid a nucleon entering in the past (3/06/2010 as in incl4.6 a.b.) if(tref <= 0.0) { // then // This is also a projectile spectator: ips=ips+1; ps->n_projspec[ips] = i; continue; // go to 38 } // endif npproj[i] = 1; pnu37: // G4cout <<"(checkpoint 'pnu37)" << G4endl; bl2->k = bl2->k + 1; bl2->crois[bl2->k] = tref; bl2->ind[bl2->k] = i; bl2->jnd[bl2->k] = -1; // pnu38: } // For composit beams, cannot decide that there is no interaction, // (another nucleon can enter later at RMAX). kcol = 1; n_activnuc = ia-ips; //number of active nucleons (not missing the target) n_enter_pot = ia-ips; //number of projectile nucleons that can enter /* if(useProjSpect) { // Treat the projectile spectators: n_activnuc = ia - ips; // number of active nucleons (not missing the target) if(ips != 0) { //then e_spec = 0.0; p1_spec = 0.0; p2_spec = 0.0; p3_spec = 0.0; z_projspec = 0; for(G4int i_spec = 1; i_spec <= ips; i_spec++) { // do i_spec=1,ips G4int i_c = n_projspec[i_spec]; e_spec = e_spec + bl1->eps[i_c]; p1_spec = p1_spec + bl1->p1[i_c]; p2_spec = p2_spec + bl1->p2[i_c]; p3_spec = p3_spec + bl1->p3[i_c]; if(bl1->ind2[i_c] == 1) z_projspec = z_projspec + 1; } G4double p_spec2 = std::pow(p1_spec,2) + std::pow(p2_spec,2) + std::pow(p3_spec,2); G4double s_spec = std::sqrt(std::pow(e_spec,2) - p_spec2); // write(6,*) 'e,p,sqs:',e_spec,sqrt(p_spec2),s_spec // c masses from dresner code: G4int fja = ips; G4int fjz = z_projspec; G4double ex2 = abla->eflmac(fja, fjz, 0, 0); // dnrgy(fja,fjz); G4double rnmass = ex2+um*fja; // c write(6,*) fja,fjz,ex2,um ex_projspec = s_spec - rnmass; if(ex_projspec <= 0.0) { //then // c no spectator nucleus compatible with available energy: ips = 0; // c n_activnuc = ia-ips!number of active nucleons (not missing the target) goto pnu239; } t_projspec = e_spec - s_spec; G4double coef = std::sqrt(t_projspec*(t_projspec + 2.0*s_spec)/p_spec2); p1_projspec = p1_spec*coef; p2_projspec = p2_spec*coef; p3_projspec = p3_spec*coef; m_projspec = rnmass; // c check module... // c write(6,*) 'projectile spectator a,z:',a_projspec,z_projspec // c write(6,*) 'm,t,e*:',m_projspec,t_projspec,ex_projspec // c write(6,*) 'p1,p2,p3:',p1_projspec,p2_projspec,p3_projspec // c write(6,*) ' constituants:',ips // c do i_spec=1,ips // c i_c = n_projspec(i_spec) // c write(6,*) i_c,eps(i_c),p1(i_c),p2(i_c),p3(i_c) // c enddo // c ...end check module } // endif pnu239: a_projspec = ips; // number of nucleons in the spectator nucleus } // End of projectile spectator treatment */ // for(G4int i = bl3->ia1+1; i < ia; i++) { //do 39 i=ia1+1,ia for(G4int i = bl3->ia1+1; i <= ia; i++) { //do 39 i=ia1+1,ia npproj[i] = 0; tref = ref(bl3->x1[i], bl3->x2[i], bl3->x3[i], bl1->p1[i], bl1->p2[i], bl1->p3[i], bl1->eps[i], r22); // line 2609 if(verboseLevel > 3) { if(tref < 0.0) { G4cout <<"G4Incl: Reflection time < 0! (line 2609)" << G4endl; } } if (tref < bl4->tmax5) { //then bl2->k = bl2->k + 1; bl2->crois[bl2->k]=tref; bl2->ind[bl2->k]=i; bl2->jnd[bl2->k]=-1; } //endif time (i, ilm); if (bl1->ta < 0.) { continue; } if (bl1->ta > bl4->tmax5) { continue; } eij=am(bl1->p1[i]+bl1->p1[ilm],bl1->p2[i]+bl1->p2[ilm],bl1->p3[i]+bl1->p3[ilm],bl1->eps[i]+bl1->eps[ilm]); if (eij < 1925.0) { continue; } isos=bl1->ind2[i]+bl1->ind2[ilm]; if (31.*(bl3->rab2) > totalCrossSection(eij,0,isos)) { continue; } bl2->k = bl2->k + 1; kcol=kcol+1; bl2->crois[bl2->k]=bl1->ta; bl2->ind[bl2->k]=i; bl2->jnd[bl2->k]=ilm; } } } // dumpBl3(dumpOut); if(verboseLevel > 3) { G4cout <<"Variables after time evaluation:" << G4endl; G4cout <<"bl3->ia1 + bl3->ia2 = ia " << G4endl; G4cout << bl3->ia1 << " " << bl3->ia2 << " " << ia << G4endl; G4cout <<"B11" << G4endl; for(G4int idebugtest = 0; idebugtest <= bl2->k; idebugtest++) { G4cout <<"index = " << idebugtest << " ind1 = " << bl1->ind1[idebugtest] << " ind2 = " << bl1->ind2[idebugtest] << " p1 = " << bl1->p1[idebugtest] << " p2 = " << bl1->p2[idebugtest] << " p3 = " << bl1->p3[idebugtest] << " bl1->eps = " << bl1->eps[idebugtest] << G4endl; } G4cout <<"Bl2" << G4endl; for(G4int idebugtest = 0; idebugtest <= bl2->k; idebugtest++) { G4cout <<"index = " << idebugtest << " ind = " << bl2->ind[idebugtest] << " jnd = " << bl2->jnd[idebugtest] << " crois = " << bl2->crois[idebugtest] << G4endl; } G4cout <<"jparticip[i]" << G4endl; for(G4int idebugtest = 0; idebugtest < 300; idebugtest++) { G4cout <<" " << jparticip[idebugtest]; } G4cout << G4endl; } // deutons if (kcol != 0) { if(verboseLevel > 3) { G4cout <<"After time evaluation: kcol != 0!" << G4endl; } goto pnu48; } // Here transparent event (no interaction avatar found) // G4cout <<"(checkpoint 'heretransparent)" << G4endl; nopart = -1; // Pour eviter renvoi des resultats du run precedent cv 7/7/98 iarem = bl3->ia2; izrem = iz2; esrem = 0.0; erecrem = 0.0; if(verboseLevel > 3) { G4cout <<"kcol == 0. No collisions..." << G4endl; G4cout <<"End of algorithm because kcol == 0." << G4endl; G4cout <<"kcol = " << kcol << G4endl; G4cout <<"Return after pnu39." << G4endl; } // fin ajout cv goto pnureturn; // Initialization at the beginning of the run pnu48: // G4cout <<"(checkpoint 'pnu48)" << G4endl; if(verboseLevel > 3) { G4cout <<"Beginning a run..." << G4endl; } timi = 0.0; tim = 0.0; ncol = 0; // compteur des collisions a deux corps (call collis acceptes par pauli) ncol_2c = 0; //C npion=0; mrnn = 0; mrnd = 0; mrdd = 0; mrdn = 0; mrdp = 0; mrpd = 0; mcdd = 0; mpaul2 = 0; mpaul1 = 0; // approx. (not considering escaping protons of incident clusters) 11/03 a.b. itch = iz1 + iz2 - 1; for(G4int i = 1; i <= ia; i++) { //do 47 i=1,ia bl5->tlg[i] = 0.0; nc[i] = 0; } itt = 1; // tableau des energies a l'initialisation if(varavat->kveux == 1) { for(G4int i = bl3->ia1+1; i <= ia; i++) { varavat->epsd[i] = bl1->eps[i]; } iflag20 = 0; iflag40 = 0; iflag60 = 0; } // search for the smallest positive t(a,b) // pour tests, =0 G4interdit les reflexions avant un avatar du projectile, // =1 comme avant (reflexions autorisees). (a.b. 3/2002) irst_avatar = 1; if(verboseLevel > 3) { G4cout <<"Now arriving to label pnu449." << G4endl; } pnu449: // G4cout <<"(checkpoint 'pnu449)" << G4endl; if(verboseLevel > 3) { G4cout <<"Now at 449" << G4endl; G4cout <<"G4Incl: Now at label pnu449." << G4endl; } next = 1; indic[next] = 1; pnu44: // G4cout <<"(checkpoint 'pnu44)" << G4endl; if(verboseLevel > 3) { G4cout <<"Now at 44" << G4endl; G4cout <<"Starting a new loop at pnu44..." << G4endl; } if(next == 0) { if(verboseLevel > 3) { G4cout <<"next == 0. Returning to label pnu449." << G4endl; G4cout <<"next == 0" << G4endl; } goto pnu449; } idep = indic[next] + 1; tau = bl2->crois[idep-1]; if(idep > bl2->k) { if(verboseLevel > 3) { G4cout <<"G4Incl: idep > bl2->k. Going to pnu448." << G4endl; } goto pnu448; } for(G4int i = idep; i <= bl2->k; i++) { //do 42 i=idep,k if (bl2->crois[i] > tau) { continue; } tau = bl2->crois[i]; next = next + 1; indic[next] = i; } if(verboseLevel > 3) { G4cout <<"next = " << next << G4endl; } pnu448: // G4cout <<"(checkpoint 'pnu448)" << G4endl; // bl2->dump(); imin = indic[next]; bl9->l1 = bl2->ind[imin]; //NOTE: l1 changed to bl9->l1. bl9->l2 = bl2->jnd[imin]; //NOTE: l2 changed to bl9->l2. #ifdef G4INCL_DEBUG_LOG // Print the debug log print_log_start_step(); print_log_entry(1, 1, 1, imin); print_log_end_step(); #endif // test le 20/3/2003: tue sinon le dernier avatar? if (bl2->k == 0) { if(verboseLevel > -2) { G4cout <<"k == 0. Going to the end of the avatar." << G4endl; } goto pnu230; } bl2->k = bl2->k - 1; // bugfix k belongs to struct bl2! next = next - 1; // correction s.vuillier 25/1/96 decalage temps correct if (imin > bl2->k) { goto pnu46; } for(G4int i = imin; i <= bl2->k; i++) { //do 43 i=imin,k bl2->crois[i] = bl2->crois[i+1]; bl2->ind[i] = bl2->ind[i+1]; bl2->jnd[i] = bl2->jnd[i+1]; } pnu46: // G4cout <<"(checkpoint 'pnu46)" << G4endl; if(verboseLevel > 3) { G4cout <<"G4Incl: Now at pnu46." << G4endl; } tim = timi + tau; avatarCounter++; // G4cout <<"FOUND AVATAR " << avatarCounter << " : tau = " << tau; // G4cout <<" l1 = " << bl9->l1 << " l2 = " << bl9->l2 << G4endl; // tableau des energies a t=20,40,60 fm/c if(varavat->kveux == 1) { if(iflag20 == 0 && tim >= 20.0) { iflag20 = 1; for(G4int i = 1; i <= ia; i++) { if(bl5->nesc[i] == 0) { if(jparticip[i] == 1) { varavat->eps2[i] = bl1->eps[i]; } else { varavat->eps2[i] = 0.0; } } else { varavat->eps2[i] = 0.; } } } if(iflag40 == 0 && tim >= 40.0) { iflag40 = 1; for(G4int i = 1; i <= ia; i++) { if(bl5->nesc[i] == 0) { if(jparticip[i] == 1) { varavat->eps4[i] = bl1->eps[i]; } else { varavat->eps4[i] = 0.0; } } else { varavat->eps4[i] = 0.0; } } } if(iflag60 == 0 && tim >= 60.) { iflag60=1; for(G4int i = 1; i <= ia; i++) { if(bl5->nesc[i] == 0) { if(jparticip[i] == 1) { varavat->eps6[i] = bl1->eps[i]; } else { varavat->eps6[i] = 0.0; } } else { varavat->eps6[i] = 0.0; } } } } // G4cout <<"(checkpoint 'pnu645)" << G4endl; // Here, stoping condition for heavy (light) ions: if(kindstruct->kindf7 < 0) { if(n_activnuc-nbquit <= ia_breakup) { // G4cout <<"stopped cascade for fermi breakup " << G4endl; goto pnu255; } } // modif: pas de reflexions avant au moins un avatar du (des) nucleon incident // celui-ci ne peut etre qu'une collision nn (ou pin) /* if((irst_avatar == 0) && (bl9->l2 == -1)) { if(verboseLevel > 3) { G4cout <<"Interaction type: reflection (l2 = " << bl9->l2 << "). No first interaction with a participant yet." << G4endl; } goto pnu44; } irst_avatar = irst_avatar+1; */ // if((bl3->ia1 + bl3->ia2 - nbquit) <= 10) goto pnu255; // Stop the cascade if only very few nucleons are left. if (tim < temfin) { if(verboseLevel > 3) { G4cout <<"G4Incl: tim < temfin. Going to pnu49 (line 2886)" << G4endl; } goto pnu49; // line 2886 } goto pnu255; pnu49: // G4cout <<"(checkpoint 'pnu49)" << G4endl; if(verboseLevel > 3) { G4cout <<"G4Incl: Now at pnu49. " << G4endl; } if (bl2->k == 0) { if(verboseLevel > 3) { G4cout <<"G4Incl: bl2->k == 0. Going to pnu255." << G4endl; } goto pnu255; } // l1 va a la surface du noyau: if (bl9->l2 == -1) { if(verboseLevel > 3) { G4cout <<"G4Incl: l2 == -1. Going to pnu220." << G4endl; } goto pnu220; } if((k4-1) <= 0) { if(verboseLevel > 3) { G4cout <<"G4Incl: (k4 - 1) <= 0. Going to pnu803." << G4endl; } goto pnu803; } if((k4-1) > 0) { if(verboseLevel > 3) { G4cout <<"G4Incl: (k4 - 1) > 0. Going to pnu830." << G4endl; } goto pnu830; } // l1 est un delta: pnu830: // G4cout <<"(checkpoint 'pnu830)" << G4endl; if(verboseLevel > 3) { G4cout <<"G4Incl: Now at pnu830." << G4endl; } if(bl9->l2 == 0) { goto pnu220; } // interaction pi(l1-ia)-nucleon(l2) if(bl9->l1 > ia) { // line 2916 if(verboseLevel > 3) { G4cout <<"G4Incl: l1 > ia (line 2916)" << G4endl; } goto pnu801; } pnu803: // G4cout <<"(checkpoint 'pnu803)" << G4endl; // pas de collision entre 2 non participants: if(jparticip[bl9->l1] == 0 && jparticip[bl9->l2] == 0) { if(verboseLevel > 3) { G4cout <<"G4Incl: both particles are spectators. No collision. " << G4endl; } goto pnu44; } // parameters for the next colliding pair t[9] = bl1->eps[bl9->l1] + bl1->eps[bl9->l2]; //t(10)->t[9] t0 = 1.0/t[9]; // t(10)->t[9] b1 = (bl1->p1[bl9->l1] + bl1->p1[bl9->l2])*t0; b2 = (bl1->p2[bl9->l1] + bl1->p2[bl9->l2])*t0; b3 = (bl1->p3[bl9->l1] + bl1->p3[bl9->l2])*t0; s = (1.0 - b1*b1 - b2*b2 - b3*b3)*t[9]*t[9]; //t(10)->t[9] sq = std::sqrt(s); if(sq < 1925.5) { if(verboseLevel > 3) { G4cout <<"sq < 1925.5" << G4endl; G4cout <<"Particles: l1 = " << bl9->l1 << " l2 = " << bl9->l2 << G4endl; G4cout <<"eps[bl9->l1] = " << bl1->eps[bl9->l1] << " eps[bl9->l2] = " << bl1->eps[bl9->l2] << G4endl; G4cout <<"p1[bl9->l1] = " << bl1->p1[bl9->l1] << " p1[bl9->l2] = " << bl1->p1[bl9->l2] << G4endl; G4cout <<"p2[bl9->l1] = " << bl1->p2[bl9->l1] << " p2[bl9->l2] = " << bl1->p2[bl9->l2] << G4endl; G4cout <<"p3[bl9->l1] = " << bl1->p3[bl9->l1] << " p3[bl9->l2] = " << bl1->p3[bl9->l2] << G4endl; G4cout <<"sq = " << sq << G4endl; } goto pnu44; } bl1->ta = tau/bl1->eps[bl9->l1]; x1l1 = bl3->x1[bl9->l1] + bl1->p1[bl9->l1]*(bl1->ta); x2l1 = bl3->x2[bl9->l1] + bl1->p2[bl9->l1]*(bl1->ta); x3l1 = bl3->x3[bl9->l1] + bl1->p3[bl9->l1]*(bl1->ta); bl1->ta = tau/bl1->eps[bl9->l2]; x1l2 = bl3->x1[bl9->l2] + bl1->p1[bl9->l2]*(bl1->ta); x2l2 = bl3->x2[bl9->l2] + bl1->p2[bl9->l2]*(bl1->ta); x3l2 = bl3->x3[bl9->l2] + bl1->p3[bl9->l2]*(bl1->ta); // test on the minimum distance of approach t[10] = x1l1 - x1l2; //t(11)->t[10] t[11] = x2l1 - x2l2; //t(12)->t[11] t[12] = x3l1 - x3l2; //t(13)->t[12] t[13] = t[10]*t[10] + t[11]*t[11] + t[12]*t[12]; //t(N)->t[N-1] t[14] = b1*t[10] + b2*t[11] + b3*t[12]; //t(N)->t[N-1] t[15] = b1*b1 + b2*b2 + b3*b3; //t(16)->t[15] bb2 = t[13] + t[14]*t[14]/(1.0 - t[15]); //t(N)->t[N-1] if(verboseLevel > 3) { G4cout <<"Minimum dist. of approach tested..." << G4endl; } if (k3 == 1) goto pnu260; if (k4 == 0) goto pnu260; mg = bl1->ind1[bl9->l1] + bl1->ind1[bl9->l2]; isos = bl1->ind2[bl9->l1] + bl1->ind2[bl9->l2]; if (mg != 1) goto pnu260; ldel = bl9->l2; if(mg - bl1->ind1[bl9->l1] == 0) ldel = bl9->l1; bl6->xx10 = std::sqrt(std::pow(bl1->eps[ldel],2) - std::pow(bl1->p1[ldel], 2) - std::pow(bl1->p2[ldel], 2) - std::pow(bl1->p3[ldel], 2)); bl6->isa = bl1->ind2[ldel]; bmax2 = totalCrossSection(sq,mg,isos)/31.415926; if (k5 == 0 && mg != 0) bmax2 = bmax2 - lowEnergy(sq,mg,isos)/31.415926; goto pnu261; pnu260: // G4cout <<"(checkpoint 'pnu260)" << G4endl; bmax2 = totalCrossSection(sq,mg,isos)/31.41592; pnu261: // G4cout <<"(checkpoint 'pnu261)" << G4endl; if (bb2 < bmax2) { goto pnu220; } if (bl2->k == 0) { goto pnu230; } if(verboseLevel > 3) { G4cout <<"bb2 >= bmax2 or bl2->k == 0" << G4endl; } goto pnu44; // loop while((bb2 >= bmax2) && (k != 0)) (PK) // evaluation of the positions at time = tim pnu220: // G4cout <<"(checkpoint 'pnu220)" << G4endl; timi = tim; if(verboseLevel > 3) { G4cout <<"Evaluating positions at time = tim" << G4endl; G4cout <<"tim = " << tim << G4endl; } // dumpSaxw(dumpOut); // dumpBl1(dumpOut); // dumpBl2(dumpOut); // dumpBl3(dumpOut); if(varavat->kveux == 1) { //then iavat = iavat + 1; varavat->timeavat[iavat] = tim; varavat->l1avat[iavat] = bl9->l1; varavat->l2avat[iavat] = bl9->l2; varavat->energyavat[iavat] = sq; if(bl9->l1 <= ia) { varavat->jpartl1[iavat] = jparticip[bl9->l1]; } else { varavat->jpartl1[iavat] = 0; } if(bl9->l2 > 0) { varavat->jpartl2[iavat] = jparticip[bl9->l2]; } else { varavat->jpartl2[iavat] = 0; } } // gel des nucleons non participants sur le premier avatar (nn)=(l1,1) /* if (irst_avatar == 1) { for(G4int i = 1; i <= bl9->l1; i = i + bl9->l1 - 1) { // bugfix! bl1->ta = tau/bl1->eps[i]; bl3->x1[i] = bl3->x1[i] + bl1->p1[i]*(bl1->ta); bl3->x2[i] = bl3->x2[i] + bl1->p2[i]*(bl1->ta); bl3->x3[i] = bl3->x3[i] + bl1->p3[i]*(bl1->ta); if(verboseLevel > 3) { G4cout <<"G4Incl: i = " << G4endl; } } for(G4int i = 1; i <= bl2->k; i++) { bl2->crois[i] = bl2->crois[i] + tau; } } else { */ for(G4int i = 1; i <= ia; i++) { bl1->ta = tau/bl1->eps[i]; bl3->x1[i] = bl3->x1[i] + bl1->p1[i]*(bl1->ta); bl3->x2[i] = bl3->x2[i] + bl1->p2[i]*(bl1->ta); bl3->x3[i] = bl3->x3[i] + bl1->p3[i]*(bl1->ta); } // } // if(npion != 0) { if(npion > 0) { for(G4int i = 1; i <= npion; i++) { bl1->ta = tau/q4[i]; y1[i] = y1[i] + q1[i]*(bl1->ta); y2[i] = y2[i] + q2[i]*(bl1->ta); y3[i] = y3[i] + q3[i]*(bl1->ta); } } // G4cout <<"(checkpoint 'pnu840)" << G4endl; if(bl9->l2 == 0) { if(verboseLevel > 3) { G4cout <<"G4Incl: l2 == 0. Going to pnu805." << G4endl; } goto pnu805; } // Candidate: if(l2!=0)... // reflexions sur le potentiel, sortie eventuelle de la particule: if (bl9->l2 == -1) { if(verboseLevel > 3) { G4cout <<"G4Incl: l2 == -1. Going to pnu600." << G4endl; } goto pnu600; } if(bl9->l1 > ia) { if(verboseLevel > 3) { G4cout <<"G4Incl: l1 > ia. Going to pnu831." << G4endl; } goto pnu831; } // collision of particles l1 and l2 if(verboseLevel > 3) { G4cout <<"Particles l1 and l2 collide!" << G4endl; } ich1 = bl1->ind1[bl9->l1]; ich2 = bl1->ind1[bl9->l2]; ich3 = bl1->ind2[bl9->l1]; ich4 = bl1->ind2[bl9->l2]; aml1 = std::sqrt(std::pow(bl1->eps[bl9->l1],2) - std::pow(bl1->p1[bl9->l1],2) - std::pow(bl1->p2[bl9->l1],2) - std::pow(bl1->p3[bl9->l1],2)); aml2 = std::sqrt(std::pow(bl1->eps[bl9->l2],2) - std::pow(bl1->p1[bl9->l2],2) - std::pow(bl1->p2[bl9->l2],2) - std::pow(bl1->p3[bl9->l2],2)); gl1 = bl1->eps[bl9->l1]/aml1; gl2 = bl1->eps[bl9->l2]/aml2; // l-conservation if (k6 == 1) { t[30] = (aml1*(bl3->x1[bl9->l1]) + aml2*(bl3->x1[bl9->l2]))/(aml1 + aml2); //t(31)->t[30] t[31] = (aml1*(bl3->x2[bl9->l1]) + aml2*(bl3->x2[bl9->l2]))/(aml1 + aml2); //t(32)->t[31] t[32] = (aml1*(bl3->x3[bl9->l1]) + aml2*(bl3->x3[bl9->l2]))/(aml1 + aml2); //t(33)->t[32] tt31 = bl3->x1[bl9->l1] - bl3->x1[bl9->l2]; tt32 = bl3->x2[bl9->l1] - bl3->x2[bl9->l2]; tt33 = bl3->x3[bl9->l1] - bl3->x3[bl9->l2]; t[33] = (aml2*(bl1->p1[bl9->l1]) - aml1*(bl1->p1[bl9->l2]))/(aml1 + aml2); //t(34)->t[33] t[34] = (aml2*(bl1->p2[bl9->l1]) - aml1*(bl1->p2[bl9->l2]))/(aml1 + aml2); //t(35)->t[34] t[35] = (aml2*(bl1->p3[bl9->l1]) - aml1*(bl1->p3[bl9->l2]))/(aml1 + aml2); //t(36)->t[35] tt34 = bl1->p1[bl9->l1] + bl1->p1[bl9->l2]; tt35 = bl1->p2[bl9->l1] + bl1->p2[bl9->l2]; tt36 = bl1->p3[bl9->l1] + bl1->p3[bl9->l2]; } // l-conservation t[20] = bl1->p1[bl9->l1]; //t(21)->t[20] t[21] = bl1->p2[bl9->l1]; //t(22)->t[21] t[22] = bl1->p3[bl9->l1]; //t(23)->t[22] t[23] = bl1->eps[bl9->l1]; //t(24)->t[23] t[24] = bl1->p1[bl9->l2]; //t(25)->t[24] t[25] = bl1->p2[bl9->l2]; //t(26)->t[25] t[26] = bl1->p3[bl9->l2]; //t(27)->t[26] t[27] = bl1->eps[bl9->l2]; //t(28)->t[27] // info delta ou nucleon: if(varavat->kveux == 1) { varavat->del1avat[iavat] = bl1->ind1[bl9->l1]; varavat->del2avat[iavat] = bl1->ind1[bl9->l2]; } minus_b1 = -1.0*b1; minus_b2 = -1.0*b2; minus_b3 = -1.0*b3; loren(&(bl1->p1[bl9->l1]), &(bl1->p2[bl9->l1]), &(bl1->p3[bl9->l1]), &minus_b1, &minus_b2, &minus_b3, &(bl1->eps[bl9->l1])); loren(&(bl1->p1[bl9->l2]), &(bl1->p2[bl9->l2]), &(bl1->p3[bl9->l2]), &minus_b1, &minus_b2, &minus_b3, &(bl1->eps[bl9->l2])); if(verboseLevel > 3) { G4cout <<"Calling collis..." << G4endl; G4cout <<"Energy eps[bl9->l1] = " << bl1->eps[bl9->l1] << G4endl; G4cout <<"Momentum: p1 = " << bl1->p1[bl9->l1] << " p2 = " << bl1->p2[bl9->l1] << " p3 = " << bl1->p3[bl9->l1] << G4endl; G4cout <<"Energy eps[bl9->l2] = " << bl1->eps[bl9->l2] << G4endl; G4cout <<"Momentum: p1 = " << bl1->p1[bl9->l2] << " p2 = " << bl1->p2[bl9->l2] << " p3 = " << bl1->p3[bl9->l2] << G4endl; } // bl9->l1 = l1; // bl9->l2 = l2; collis(&(bl1->p1[bl9->l1]), &(bl1->p2[bl9->l1]), &(bl1->p3[bl9->l1]), &(bl1->eps[bl9->l1]), &(bl1->p1[bl9->l2]), &(bl1->p2[bl9->l2]), &(bl1->p3[bl9->l2]), &(bl1->eps[bl9->l2]), &(t[11]), &(t[12]), &(t[13]), &(t[14]), &np, &ip, &k2, &k3, &k4, &k5, &(bl1->ind1[bl9->l1]), &(bl1->ind1[bl9->l2]), &(bl1->ind2[bl9->l1]), &(bl1->ind2[bl9->l2])); // l1 = bl9->l1; // l2 = bl9->l2; if(verboseLevel > 3) { G4cout <<"End of collis call" << G4endl; G4cout <<"Energy eps[bl9->l1] = " << bl1->eps[bl9->l1] << G4endl; G4cout <<"Energy eps[bl9->l2] = " << bl1->eps[bl9->l2] << G4endl; } if(verboseLevel > 3) { G4cout <<"Variables after collis call: "<< G4endl; G4cout <<"bl1->p1[" << bl9->l1 <<"] = " << bl1->p1[bl9->l1] <<" bl1->p2[" << bl9->l1 <<"] = " << bl1->p2[bl9->l1] <<" bl1->p3[" << bl9->l1 <<"] = " << bl1->p3[bl9->l1] <<" bl1->eps[" << bl9->l1 <<"] = " << bl1->eps[bl9->l1] << G4endl; G4cout <<"bl1->p1[" << bl9->l2 <<"] = " << bl1->p1[bl9->l2] <<" bl2->p2[" << bl9->l2 <<"] = " << bl1->p2[bl9->l2] <<" bl2->p3[" << bl9->l2 <<"] = " << bl1->p3[bl9->l2] <<" bl1->eps[" << bl9->l2 <<"] = " << bl1->eps[bl9->l2] << G4endl; } loren(&(bl1->p1[bl9->l1]), &(bl1->p2[bl9->l1]), &(bl1->p3[bl9->l1]), &b1, &b2, &b3, &(bl1->eps[bl9->l1])); loren(&(bl1->p1[bl9->l2]), &(bl1->p2[bl9->l2]), &(bl1->p3[bl9->l2]), &b1, &b2, &b3, &(bl1->eps[bl9->l2])); if (bl1->ind1[bl9->l1] == 1) { // bugfix 1 -> 0 goto pnu243; } xbl1 = pauliBlocking(bl9->l1, rbl, pbl); standardRandom(&rndm,&(hazard->igraine[10])); if (rndm > (1.0 - xbl1)) { goto pnu248; } pnu243: // G4cout <<"(checkpoint 'pnu243)" << G4endl; if (bl1->ind1[bl9->l2] == 1) { // bugfix 1 -> 0 goto pnu241; } xbl2 = pauliBlocking(bl9->l2, rbl, pbl); standardRandom(&rndm,&(hazard->igraine[10])); if (rndm > (1.0 - xbl2)) { goto pnu248; } goto pnu241; pnu248: // G4cout <<"(checkpoint 'pnu248)" << G4endl; if(verboseLevel > 3) { G4cout <<"Pauli blocked transition!" << G4endl; } mpaul1 = mpaul1 + 1; if(varavat->kveux == 1) { varavat->bloc_paul[iavat] = 1; } // restitution de l1 et l2 si rejet de la col. par pauli: bl1->p1[bl9->l1] = t[20]; //t(21)->t[20] bl1->p2[bl9->l1] = t[21]; //t(22)->t[21] bl1->p3[bl9->l1] = t[22]; //t(23)->t[22] bl1->eps[bl9->l1] = t[23]; //t(24)->t[23] bl1->p1[bl9->l2] = t[24]; //t(25)->t[24] bl1->p2[bl9->l2] = t[25]; //t(26)->t[25] bl1->p3[bl9->l2] = t[26]; //t(27)->t[26] bl1->eps[bl9->l2] = t[27]; //t(28)->t[27] bl1->ind1[bl9->l1] = ich1; bl1->ind1[bl9->l2] = ich2; bl1->ind2[bl9->l1] = ich3; bl1->ind2[bl9->l2] = ich4; if (bl2->k == 0) { goto pnu230; } for(G4int i = 1; i <= bl2->k; i++) { bl2->crois[i] = bl2->crois[i] - tau; } // pour le temps de calcul (a.b. 02/2002) if(verboseLevel > 3) { G4cout <<"G4Incl: bl2->k != 0" << G4endl; } goto pnu44; pnu241: // G4cout <<"(checkpoint 'pnu241)" << G4endl; // la premiere collision a deux corps ne peut pas baisser l'energie // du nucleon de recul (bloque par pauli dans un noyau cible froid). // (ici, toujours l2 < l1) ncol_2c = ncol_2c + 1; if(ncol_2c == 1) { for (G4int icomp = 1; icomp <= bl3->ia1; icomp++) { // test on the first collision modified 4/07/2001 for direct and exchange. if(icomp == bl9->l1 || icomp == bl9->l2) { xavant = min(t[23],t[27]); //t(24)->t[23], t(28)->t[27] xapres = min(bl1->eps[bl9->l1],bl1->eps[bl9->l2]); if(xapres <= xavant) { if(varavat->kveux == 1) { varavat->bloc_cdpp[iavat] = 1; } goto pnu248; } } } // pour le ntuple des avatars: if(varavat->kveux == 1) { //then varavat->r1_first_avat[0] = bl3->x1[1]; //(N)->[N-1] varavat->r1_first_avat[1] = bl3->x2[1]; //(N)->[N-1] varavat->r1_first_avat[2] = bl3->x3[1]; //(N)->[N-1] } //endif } else { // les collisions suivantes ne penvent conduire a un noyau de a nucleons // sous l'energie de fermi et dans une config. d'energie inferieure a // efer-(ia2-nbalttf)*tf). egs = 0.0; nbalttf = 0; // for(G4int i = 1; i <= ia-1; i++) { for(G4int i = 1; i <= ia; i++) { if(bl5->nesc[i] == 0) { if(std::sqrt(std::pow(bl1->p1[i],2)+std::pow(bl1->p2[i],2)+std::pow(bl1->p3[i],2)) < bl10->pf) { nbalttf = nbalttf + 1; egs = egs + bl1->eps[i] - fmp; } } } if(egs < (efer- double(bl3->ia2-nbalttf)*tf)) { if(varavat->kveux == 1) { varavat->bloc_cdpp[iavat] = 1; } goto pnu248; } } if(varavat->kveux == 1) { varavat->bloc_cdpp[iavat] = 0; varavat->bloc_paul[iavat] = 0; } jparticip[bl9->l1] = 1; jparticip[bl9->l2] = 1; if(verboseLevel > 3) { G4cout <<"Particle " << bl9->l1 << " is now participant." << G4endl; G4cout <<"Particle " << bl9->l2 << " is now participant." << G4endl; } if (ws->nosurf <= 0) { // surface pppp = std::sqrt(std::pow(bl1->p1[bl9->l1],2) + std::pow(bl1->p2[bl9->l1],2) + std::pow(bl1->p3[bl9->l1],2)); rrrr = std::sqrt(std::pow(bl3->x1[bl9->l1],2) + std::pow(bl3->x2[bl9->l1],2) + std::pow(bl3->x3[bl9->l1],2)); if (pppp <= bl10->pf) { xv = pppp/bl10->pf; rcorr = interpolateFunction(xv); if (rrrr > rcorr) { bl3->x1[bl9->l1] = bl3->x1[bl9->l1]*rcorr/rrrr; bl3->x2[bl9->l1] = bl3->x2[bl9->l1]*rcorr/rrrr; bl3->x3[bl9->l1] = bl3->x3[bl9->l1]*rcorr/rrrr; } } pppp = std::sqrt(std::pow(bl1->p1[bl9->l2],2) + std::pow(bl1->p2[bl9->l2],2) + std::pow(bl1->p3[bl9->l2],2)); rrrr = std::sqrt(std::pow(bl3->x1[bl9->l2],2) + std::pow(bl3->x2[bl9->l2],2) + std::pow(bl3->x3[bl9->l2],2)); if (pppp <= bl10->pf) { xv = pppp/bl10->pf; rcorr = interpolateFunction(xv); if (rrrr > rcorr) { bl3->x1[bl9->l2] = bl3->x1[bl9->l2]*rcorr/rrrr; bl3->x2[bl9->l2] = bl3->x2[bl9->l2]*rcorr/rrrr; bl3->x3[bl9->l2] = bl3->x3[bl9->l2]*rcorr/rrrr; } } } if (np == 0) { goto pnu240; } npion = npion + 1; loren(&(t[11]), &(t[12]), &(t[13]), &b1, &b2, &b3, &(t[14])); //t(N)->t[N-1] q1[npion] = t[11]; //t(12)->t[11] q2[npion] = t[12]; //t(13)->t[12] q3[npion] = t[13]; //t(14)->t[13] q4[npion] = t[14]; //t(15)->t[14] pnu240: // G4cout <<"(checkpoint 'pnu240)" << G4endl; ncol = ncol + 1; if (bl9->l2 != 1) { goto pnu870; } // critere pour la leading particle: avant impulsion longitudinale max l=1 // change en fevrier 2002: leading part. = energie totale max (l=1) if (bl1->p3[bl9->l2] > bl1->p3[bl9->l1]) { goto pnu870; } // attention, il faut mieux faire et selectionner la plus grande energie // des particules participantes (jparticip()=1) et dans le noyau (nesc()=0)! xr1 = bl1->p1[bl9->l1]; xr2 = bl1->p2[bl9->l1]; xr3 = bl1->p3[bl9->l1]; xr4 = bl1->eps[bl9->l1]; xr5 = bl3->x1[bl9->l1]; xr6 = bl3->x2[bl9->l1]; xr7 = bl3->x3[bl9->l1]; xr8 = gl1; ixr1 = bl1->ind1[bl9->l1]; ixr2 = bl1->ind2[bl9->l1]; ixr3 = ich1; bl1->p1[bl9->l1] = bl1->p1[bl9->l2]; bl1->p2[bl9->l1] = bl1->p2[bl9->l2]; bl1->p3[bl9->l1] = bl1->p3[bl9->l2]; bl1->eps[bl9->l1] = bl1->eps[bl9->l2]; bl3->x1[bl9->l1] = bl3->x1[bl9->l2]; bl3->x2[bl9->l1] = bl3->x2[bl9->l2]; bl3->x3[bl9->l1] = bl3->x3[bl9->l2]; gl1 = gl2; bl1->ind1[bl9->l1] = bl1->ind1[bl9->l2]; bl1->ind2[bl9->l1] = bl1->ind2[bl9->l2]; ich1 = ich2; bl1->p1[bl9->l2] = xr1; bl1->p2[bl9->l2] = xr2; bl1->p3[bl9->l2] = xr3; bl1->eps[bl9->l2] = xr4; bl3->x1[bl9->l2] = xr5; bl3->x2[bl9->l2] = xr6; bl3->x3[bl9->l2] = xr7; gl2 = xr8; bl1->ind1[bl9->l2] = ixr1; bl1->ind2[bl9->l2] = ixr2; ich2 = ixr3; if(ich1 + ich2 - bl1->ind1[bl9->l1] - bl1->ind1[bl9->l2] != 0 || (ich1 + ich2) != 1) { goto pnu870; } if (bl2->k == 0) { goto pnu870; } for(G4int i = 1; i <= bl2->k; i++) { if((bl2->ind[i] != 1) || (bl2->jnd[i] != 0)) { if((bl2->ind[i] != bl9->l1) || (bl2->jnd[i] != 0)) { continue; } bl2->ind[i] = 1; break; } bl2->ind[i] = bl9->l1; break; } pnu870: // G4cout <<"(checkpoint 'pnu870)" << G4endl; bl5->tlg[bl9->l1] = th*(bl1->eps[bl9->l1])/std::sqrt(std::pow(bl1->eps[bl9->l1],2)-std::pow(bl1->p1[bl9->l1],2)-std::pow(bl1->p2[bl9->l1],2)-std::pow(bl1->p3[bl9->l1],2)); bl5->tlg[bl9->l2] = th*(bl1->eps[bl9->l2])/std::sqrt(std::pow(bl1->eps[bl9->l2],2)-std::pow(bl1->p1[bl9->l2],2)-std::pow(bl1->p2[bl9->l2],2)-std::pow(bl1->p3[bl9->l2],2)); nc[bl9->l1] = nc[bl9->l1] + 1; nc[bl9->l2] = nc[bl9->l2] + 1; led = 0; if((ich1+ich2-bl1->ind1[bl9->l1]-bl1->ind1[bl9->l2]) < 0) { mrnd = mrnd + 1; } if((ich1+ich2-bl1->ind1[bl9->l1]-bl1->ind1[bl9->l2]) == 0) { if((ich1+ich2-1) < 0) { mrnn = mrnn + 1; } if((ich1+ich2-1) == 0) { mrdd = mrdd + 1; led = 1; } if((ich1+ich2-1) > 0) { mcdd = mcdd + 1; led = 1; } } if((ich1+ich2-bl1->ind1[bl9->l1]-bl1->ind1[bl9->l2]) > 0) { mrdn = mrdn + 1; } // reevaluation of the times t(a,b) for (a or b)=(l1 or l2) // l-conservation if (k6 == 1) { aml1 = am(bl1->p1[bl9->l1],bl1->p2[bl9->l1],bl1->p3[bl9->l1],bl1->eps[bl9->l1]); aml2 = am(bl1->p1[bl9->l2],bl1->p2[bl9->l2],bl1->p3[bl9->l2],bl1->eps[bl9->l2]); t[36] = (aml2*(bl1->p1[bl9->l1]) - aml1*(bl1->p1[bl9->l2]))/(aml1+aml2); //t(37)->t[36] t[37] = (aml2*(bl1->p2[bl9->l1]) - aml1*(bl1->p2[bl9->l2]))/(aml1+aml2); //t(38)->t[37] t[38] = (aml2*(bl1->p3[bl9->l1]) - aml1*(bl1->p3[bl9->l2]))/(aml1+aml2); //t(39)->t[38] t[39] = std::sqrt(t[33]*t[33] + t[34]*t[34] + t[35]*t[35]); //t(N)->t[N-1] t[40] = std::sqrt(t[36]*t[36] + t[37]*t[37] + t[38]*t[38]); //t(N)->t[N-1] rhopi = tt31*t[33] + tt32*t[34] + tt33*t[35]; //t(N)->t[N-1] t[42] = tt31 - rhopi*t[33]/std::pow(t[39],2); //t(N)->t[N-1] t[43] = tt32 - rhopi*t[34]/std::pow(t[39],2); //t(N)->t[N-1] t[44] = tt33 - rhopi*t[35]/std::pow(t[39],2); //t(N)->t[N-1] t[45] = std::sqrt(t[42]*t[42] + t[43]*t[43] + t[44]*t[44]); //t(N)->t[N-1] t[42] = t[42]/t[45]; //t(N)->t[N-1] t[43] = t[43]/t[45]; //t(N)->t[N-1] t[44] = t[44]/t[45]; cif = (t[33]*t[36] + t[34]*t[37] + t[35]*t[38])/t[39]/t[40]; //t(N)->t[N-1] // trouble with forward scattering 22/3/95 if(std::fabs(cif) > 1.) { cif = sign(1.0,cif); } sif = std::sqrt(1.0 - cif*cif); t[36] = (t[33]*cif/t[39] + t[42]*sif)*t[40]; //t(N)->t[N-1] t[37] = (t[34]*cif/t[39] + t[43]*sif)*t[40]; //t(N)->t[N-1] t[38] = (t[35]*cif/t[39] + t[44]*sif)*t[40]; //t(N)->t[N-1] tri = std::sqrt(tt31*tt31 + tt32*tt32 + tt33*tt33); cchi = rhopi/tri/t[39]; //t(40)->t[39] schi = std::sqrt(1.0 - cchi*cchi); c1 = cif*cchi - sif*schi; c2 = sif*cchi + cif*schi; tt31 = (c1*t[33]/t[39] + c2*t[42])*tri*t[39]/t[40]; //t(N)->t[N-1] tt32 = (c1*t[34]/t[39] + c2*t[43])*tri*t[39]/t[40]; //t(N)->t[N-1] tt33 = (c1*t[35]/t[39] + c2*t[44])*tri*t[39]/t[40]; //t(N)->t[N-1] bl3->x1[bl9->l1] = t[30] + aml2*tt31/(aml1 + aml2); //t(31)->t[30] bl3->x2[bl9->l1] = t[31] + aml2*tt32/(aml1 + aml2); //t(32)->t[30] bl3->x3[bl9->l1] = t[32] + aml2*tt33/(aml1 + aml2); //t(33)->t[32] bl3->x1[bl9->l2] = t[30] - aml1*tt31/(aml1 + aml2); //t(31)->t[30] bl3->x2[bl9->l2] = t[31] - aml1*tt32/(aml1 + aml2); //t(32)->t[31] bl3->x3[bl9->l2] = t[32] - aml1*tt33/(aml1 + aml2); //t(33)->t[32] bl1->p1[bl9->l1] = aml1*tt34/(aml1 + aml2) + t[36]; //t(37)->t[36] bl1->p2[bl9->l1] = aml1*tt35/(aml1 + aml2) + t[37]; //t(38)->t[37] bl1->p3[bl9->l1] = aml1*tt36/(aml1 + aml2) + t[38]; //t(39)->t[38] bl1->eps[bl9->l1] = w(bl1->p1[bl9->l1],bl1->p2[bl9->l1],bl1->p3[bl9->l1],aml1); bl1->p1[bl9->l2] = aml2*tt34/(aml1 + aml2) - t[36]; //t(37)->t[36] bl1->p2[bl9->l2] = aml2*tt35/(aml1 + aml2) - t[37]; //t(38)->t[37] bl1->p3[bl9->l2] = aml2*tt36/(aml1 + aml2) - t[38]; //t(39)->t[38] bl1->eps[bl9->l2] = w(bl1->p1[bl9->l2],bl1->p2[bl9->l2],bl1->p3[bl9->l2],aml2); } // l-conservation if(bl2->k != 0) { kd = 0; ccr = tau; // for(G4int i = 1; i <= bl2->k; i++) { // i20 = i - kd; // if (k4 != 2 || led != 1) { // if((bl2->ind[i] == l1) || (bl2->ind[i] == l2) || (bl2->jnd[i] == l1) || (bl2->jnd[i] == l2)) { // kd = kd + 1; // continue; // } // } // else { // if(bl2->jnd[i] == 0) { // if (bl2->ind[i] == l1 && bl1->ind1[l1] == 1) { // bl2->crois[i]=(bl2->crois[i]-ccr)*(bl1->eps[l1])/std::sqrt(std::pow(bl1->eps[l1],2)-std::pow(bl1->p1[l1],2)-std::pow(bl1->p2[l1],2)-std::pow(bl1->p3[l1],2))/gl1+ccr; // } // if (bl2->ind[i] == l2 && bl1->ind1[l2] == 1) { // bl2->crois[i]=(bl2->crois[i]-ccr)*(bl1->eps[l2])/std::sqrt(std::pow(bl1->eps[l2],2)-std::pow(bl1->p1[l2],2)-std::pow(bl1->p2[l2],2)-std::pow(bl1->p3[l2],2))/gl2+ccr; // } // } // } // bl2->crois[i20]=bl2->crois[i]-ccr; // bl2->ind[i20]=bl2->ind[i]; // bl2->jnd[i20]=bl2->jnd[i]; // } for(G4int i = 1; i <= bl2->k; i++) { //do 50 i=1,k p-n09070 i20 = i - kd; if(k4 != 2 || led != 1) { //if (k4.ne.2.or.led.ne.1) go to 512 p-n09090 goto pnu512; } if(bl2->jnd[i] == 0) {//if (jnd(i).eq.0) go to 511 p-n09100 goto pnu511; } pnu512: if(bl2->ind[i] == bl9->l1) {//if (ind(i).eq.l1) go to 52 p-n09120 goto pnu52; } if(bl2->ind[i] == bl9->l2) {//if (ind(i).eq.l2) go to 52 p-n09130 goto pnu52; } if(bl2->jnd[i] == bl9->l2) {//if (jnd(i).eq.l2) go to 52 p-n09140 goto pnu52; } if(bl2->jnd[i] == bl9->l1) {//if (jnd(i).eq.l1) go to 52 p-n09150 goto pnu52; } goto pnu513; pnu511: //if (ind(i).eq.l1.and.ind1(l1).eq.1) crois(i)=(crois(i)-ccr)*eps(l1p-n09170 //-)/std::sqrt(eps(l1)**2-p1(l1)**2-p2(l1)**2-p3(l1)**2)/gl1+ccr p-n09180 if(bl2->ind[i] == bl9->l1 && bl1->ind1[bl9->l1] == 1) { bl2->crois[i]=(bl2->crois[i]-ccr)*bl1->eps[bl9->l1]/std::sqrt(std::pow(bl1->eps[bl9->l1],2)-std::pow(bl1->p1[bl9->l1],2)-std::pow(bl1->p2[bl9->l1],2)-std::pow(bl1->p3[bl9->l1],2))/gl1+ccr; } //if (ind(i).eq.l2.and.ind1(l2).eq.1) crois(i)=(crois(i)-ccr)*eps(l2p-n09190 //-)/std::sqrt(eps(l2)**2-p1(l2)**2-p2(l2)**2-p3(l2)**2)/gl2+ccr p-n09200 if(bl2->ind[i] == bl9->l2 && bl1->ind1[bl9->l2] == 1) { bl2->crois[i]=(bl2->crois[i]-ccr)*bl1->eps[bl9->l2]/std::sqrt(std::pow(bl1->eps[bl9->l2],2)-std::pow(bl1->p1[bl9->l2],2)-std::pow(bl1->p2[bl9->l2],2)-std::pow(bl1->p3[bl9->l2],2))/gl1+ccr; } pnu513: bl2->crois[i20]=bl2->crois[i]-ccr; bl2->ind[i20]=bl2->ind[i]; bl2->jnd[i20]=bl2->jnd[i]; continue; // goto pnu50 pnu52: kd=kd+1; } bl2->k = bl2->k - kd; } newt(bl9->l1,bl9->l2); tref=ref(bl3->x1[bl9->l1], bl3->x2[bl9->l1], bl3->x3[bl9->l1], bl1->p1[bl9->l1], bl1->p2[bl9->l1], bl1->p3[bl9->l1], bl1->eps[bl9->l1],r22); // line 3502 if(verboseLevel > 3) { if(tref < 0.0) { G4cout <<"G4Incl: Reflection time < 0! (line 3502)" << G4endl; } } if(tref <= bl4->tmax5) { bl2->k = bl2->k + 1; bl2->crois[bl2->k] = tref; bl2->ind[bl2->k] = bl9->l1; bl2->jnd[bl2->k] = -1; } tref=ref(bl3->x1[bl9->l2], bl3->x2[bl9->l2], bl3->x3[bl9->l2], bl1->p1[bl9->l2], bl1->p2[bl9->l2], bl1->p3[bl9->l2], bl1->eps[bl9->l2],r22); // line 3516 if(verboseLevel > 3) { if(tref < 0.0) { G4cout <<"G4Incl: Reflection time < 0! (line 3516)" << G4endl; } } if(tref <= bl4->tmax5) { bl2->k = bl2->k + 1; bl2->crois[bl2->k] = tref; bl2->ind[bl2->k] = bl9->l2; bl2->jnd[bl2->k] = -1; } if (k4 == 2) { goto pnu848; } if(bl2->k < 0) { goto pnu230; } if(bl2->k == 0) { goto pnu230; } if(bl2->k > 0) { if(verboseLevel > 3) { G4cout <<"G4Incl: bl2->k > 0 at line 3488. Going back to label pnu449." << G4endl; } goto pnu449; } pnu848: // G4cout <<"(checkpoint 'pnu848)" << G4endl; if (npion == 0) { goto pnu844; } if (bl1->ind1[bl9->l1] == 1) { goto pnu843; } for(G4int k20 = 1; k20 <= npion; k20++) { if(verboseLevel > 3) { G4cout <<"G4Incl: calling G4Incl::new3" << G4endl; } new3((y1[k20]), (y2[k20]), (y3[k20]), (q1[k20]), (q2[k20]), (q3[k20]), (q4[k20]), k20, bl9->l1); if(verboseLevel > 3) { G4cout <<"G4Incl: After new3:" << G4endl; G4cout <<"y1[" << k20 << "] = " << y1[k20] <<" y2[" << k20 << "] = " << y2[k20] <<" y3[" << k20 << "] = " << y3[k20] << G4endl; G4cout <<"q1[" << k20 << "] = " << q1[k20] <<" q2[" << k20 << "] = " << q2[k20] <<" q3[" << k20 << "] = " << q3[k20] << G4endl; } } pnu843: // G4cout <<"(checkpoint 'pnu843)" << G4endl; if(bl1->ind1[bl9->l2] != 1) { for(G4int k20 = 1; k20 <= npion; k20++) { //new3(y1[k20], y2[k20], y3[k20], q1[k20], q2[k20], q3[k20], q4[k20], -k20, l2); new3(y1[k20], y2[k20], y3[k20], q1[k20], q2[k20], q3[k20], q4[k20], k20, bl9->l2); } } pnu844: // G4cout <<"(checkpoint 'pnu844)" << G4endl; if(bl1->ind1[bl9->l1]+bl1->ind1[bl9->l2] <= ich1+ich2) { goto pnu849; } if(bl1->ind1[bl9->l1]-ich1 != 1) { goto pnu820; } lnew = bl9->l1; goto pnu821; pnu820: // G4cout <<"(checkpoint 'pnu820)" << G4endl; if(bl1->ind1[bl9->l2]-ich2 != 1) { goto pnu849; } lnew = bl9->l2; pnu821: // G4cout <<"(checkpoint 'pnu821)" << G4endl; standardRandom(&rndm,&(hazard->igraine[16])); // largeur variable du delta (phase space factor G4introduced 4/2001) amlnew = std::sqrt(std::pow(bl1->eps[lnew],2)-std::pow(bl1->p1[lnew],2)-std::pow(bl1->p2[lnew],2)-std::pow(bl1->p3[lnew],2)); geff = bl1->eps[lnew]/amlnew; qqq = std::sqrt((std::pow(amlnew,2) - std::pow((fmp+fmpi),2))*(std::pow(amlnew,2) - std::pow((fmp-fmpi),2)))/(2.0*amlnew); psf = std::pow(qqq,3)/(std::pow(qqq,3) + 5832000.0); tdel = -hc/(g0*psf)*std::log(rndm)*geff; if(tdel <= bl4->tmax5) { bl2->k = bl2->k + 1; bl2->crois[bl2->k] = tdel; bl2->ind[bl2->k] = lnew; bl2->jnd[bl2->k] = 0; } pnu849: if (bl2->k == 0) { goto pnu230; } if(verboseLevel > 3) { G4cout <<"G4Incl: bl2->k != 0. Going back to label pnu449." << G4endl; } goto pnu449; // decay of the delta particle p-n09780 pnu805: // G4cout <<"(checkpoint 'pnu805)" << G4endl; npion = npion + 1; ichd = bl1->ind2[bl9->l1]; t[30] = bl1->p1[bl9->l1]; //t(31)->t[30] t[31] = bl1->p2[bl9->l1]; //t(32)->t[31] t[32] = bl1->p3[bl9->l1]; //t(33)->t[32] t[33] = bl1->eps[bl9->l1]; //t(34)->t[33] var_ab = std::pow(bl1->eps[bl9->l1],2) - std::pow(bl1->p1[bl9->l1],2) - std::pow(bl1->p2[bl9->l1],2) - std::pow(bl1->p3[bl9->l1],2); ym[npion] = 0.0; if(var_ab > 0.0) { ym[npion] = std::sqrt(var_ab); } //PK: This workaround avoids a NaN problem encountered with //geant4. The problem does not seem to exist if we run in standalone //mode. // if(((std::pow(ym[npion],2)-std::pow(fmp+fmpi,2))*(std::pow(ym[npion],2)-std::pow(fmp-fmpi,2))) < 0) { // ym[npion] = ym[npion]+fmpi+100.0; // } // PK if(varavat->kveux == 1) { varavat->del1avat[iavat] = bl1->ind1[bl9->l1]; varavat->energyavat[iavat] = ym[npion]; } if(verboseLevel > 3) { G4cout <<"Calling decay2 from pnu" << G4endl; G4cout <<"npion = " << npion << G4endl; G4cout <<"q1 = " << q1[npion] << " q2 = " << q2[npion] << " q3 = " << q3[npion] << " q4 = " << q4[npion] << G4endl; } decay2(&(bl1->p1[bl9->l1]), &(bl1->p2[bl9->l1]), &(bl1->p3[bl9->l1]), &(bl1->eps[bl9->l1]), &(q1[npion]), &(q2[npion]), &(q3[npion]), &(q4[npion]), &(ym[npion]), &fmp, &fmpi, &(bl9->hel[bl9->l1])); if(verboseLevel > 3) { G4cout <<"Quantities after decay2: " << G4endl; G4cout <<"l1 = " << bl9->l1 << " bl1->p1[l1] = " << bl1->p1[bl9->l1] << " bl1->p2[l1] = " << bl1->p2[bl9->l1] << " bl1->p3[l1] = " << bl1->p3[bl9->l1] << " bl1->eps[l1] = " << bl1->eps[bl9->l1] << G4endl; } // decay if (bl1->ind2[bl9->l1]*(bl1->ind2[bl9->l1]) == 9) { goto pnu806; } standardRandom(&rndm, &(hazard->ial)); if (rndm < 0.333333333) { goto pnu837; } ipi[npion]=0; goto pnu809; pnu837: // G4cout <<"(checkpoint 'pnu837)" << G4endl; ipi[npion]=bl1->ind2[bl9->l1]*2; bl1->ind2[bl9->l1]=-1*(bl1->ind2[bl9->l1]); goto pnu809; pnu806: // G4cout <<"(checkpoint 'pnu806)" << G4endl; bl1->ind2[bl9->l1]=bl1->ind2[bl9->l1]/3; ipi[npion]=2*(bl1->ind2[bl9->l1]); pnu809: // continue // G4cout <<"(checkpoint 'pnu809)" << G4endl; bl1->ind1[bl9->l1]=0; bl5->tlg[bl9->l1]=0.; // escape ? if (bl5->nesc[bl9->l1] > 0) { goto pnu850; } iteste = 0; xpb = pauliBlocking(bl9->l1, rbl, pbl); standardRandom(&rndm,&(hazard->igraine[10])); // pauli blocking? if (rndm <= xpb) { goto pnu1848; } // le decay ne peut conduire a un noyau de a nucleons // sous l'energie de fermi et dans une config. d'energie inferieure a // c efer-(ia2-nbalttf)*tf). egs = 0.0; nbalttf = 0; iteste = 1; for(G4int i = 1; i <= ia; i++) { if(bl5->nesc[i] == 0) { if(std::sqrt(std::pow(bl1->p1[i],2)+std::pow(bl1->p2[i],2)+std::pow(bl1->p3[i],2)) < bl10->pf) { nbalttf = nbalttf + 1; egs = egs + bl1->eps[i] - fmp; } } } if(egs >= (efer - double(bl3->ia2-nbalttf)*tf)) { goto pnu850; } // attention, logique negative!!! liberer le goto si on veut supprimer la // sequence precedente (cdpp sur delta-> pi n) if(varavat->kveux == 1) { varavat->bloc_cdpp[iavat] = 1; } // it is blocked! pnu1848: // G4cout <<"(checkpoint 'pnu1848)" << G4endl; mpaul2 = mpaul2 + 1; if(varavat->kveux == 1) { varavat->bloc_paul[iavat] = 1; } // largeur variable du delta (phase space factor G4introduced 4/2001) // (180.**3 = 5832000.) qqq = std::sqrt((std::pow(ym[npion],2) - std::pow((fmp+fmpi),2))*(std::pow(ym[npion],2) - std::pow((fmp-fmpi),2)))/(2.*ym[npion]); psf = std::pow(qqq,3)/(std::pow(qqq,3)+5832000.0); tdel = hc*t[33]/(g0*psf*ym[npion]); //t(34)->t[33] if (iteste == 0) { tdel = tdel*xpb/(1.000001-xpb); } if(tdel <= bl4->tmax5) { bl2->k = bl2->k + 1; bl2->crois[bl2->k] = tdel; bl2->ind[bl2->k] = bl9->l1; bl2->jnd[bl2->k] = 0; } bl1->p1[bl9->l1] = t[30]; //t(31)->t[30] bl1->p2[bl9->l1] = t[31]; //t(32)->t[31] bl1->p3[bl9->l1] = t[32]; //t(33)->t[32] bl1->eps[bl9->l1] = t[33]; //t(34)->t[33] bl1->ind1[bl9->l1] = 1; bl1->ind2[bl9->l1] = ichd; npion = npion - 1; if (bl2->k == 0) { goto pnu230; } for(G4int i = 1; i <= bl2->k; i++) { bl2->crois[i] = bl2->crois[i] - tau; } if(verboseLevel > 3) { G4cout <<"G4Incl: Going back to label pnu449 after a loop from 1 to bl2->k" << G4endl; } goto pnu449; // valid decay of the delta pnu850: // G4cout <<"(checkpoint 'pnu850)" << G4endl; if(varavat->kveux == 1) { varavat->bloc_paul[iavat] = 0; varavat->bloc_cdpp[iavat] = 0; } if (ws->nosurf <= 0) { // surface pppp = std::sqrt(std::pow(bl1->p1[bl9->l1],2) + std::pow(bl1->p2[bl9->l1],2) + std::pow(bl1->p3[bl9->l1],2)); rrrr = std::sqrt(std::pow(bl3->x1[bl9->l1],2) + std::pow(bl3->x2[bl9->l1],2) + std::pow(bl3->x3[bl9->l1],2)); if (pppp <= bl10->pf) { xv = pppp/bl10->pf; rcorr = interpolateFunction(xv); if (rrrr > rcorr) { bl3->x1[bl9->l1] = bl3->x1[bl9->l1]*rcorr/rrrr; bl3->x2[bl9->l1] = bl3->x2[bl9->l1]*rcorr/rrrr; bl3->x3[bl9->l1] = bl3->x3[bl9->l1]*rcorr/rrrr; } } } ncol = ncol + 1; mrdp = mrdp + 1; y1[npion] = bl3->x1[bl9->l1]; y2[npion] = bl3->x2[bl9->l1]; y3[npion] = bl3->x3[bl9->l1]; if (bl2->k == 0) { goto pnu4047; } kd = 0; ccr = tau; for(G4int i = 1; i <= bl2->k; i++) { i20 = i - kd; if((bl2->ind[i] == bl9->l1) || (bl2->jnd[i] == bl9->l1)) { kd = kd + 1; } else { bl2->crois[i20] = bl2->crois[i] - ccr; bl2->ind[i20] = bl2->ind[i]; bl2->jnd[i20] = bl2->jnd[i]; } } bl2->k = bl2->k - kd; pnu4047: // G4cout <<"(checkpoint 'pnu4047)" << G4endl; if (bl5->nesc[bl9->l1] != 0) { goto pnu845; } new1(bl9->l1); bl2->k = bl2->k + 1; bl2->crois[bl2->k] = ref(bl3->x1[bl9->l1], bl3->x2[bl9->l1], bl3->x3[bl9->l1], bl1->p1[bl9->l1], bl1->p2[bl9->l1], bl1->p3[bl9->l1], bl1->eps[bl9->l1],r22); bl2->ind[bl2->k] = bl9->l1; bl2->jnd[bl2->k] = -1; if(verboseLevel > 3) { if(bl2->crois[bl2->k] < 0.0) { G4cout <<"G4Incl: Reflection time < 0! (line 3797)" << G4endl; } } if(npion > 1) { n20 = npion - 1; for(G4int k20 = 1; k20 <= n20; k20++) { new3(y1[k20], y2[k20], y3[k20], q1[k20], q2[k20], q3[k20], q4[k20], k20, bl9->l1); } } pnu845: // G4cout <<"(checkpoint 'pnu845)" << G4endl; new2(y1[npion], y2[npion], y3[npion], q1[npion], q2[npion], q3[npion], q4[npion], npion, bl9->l1); if(bl2->k == 0) { goto pnu230; } if(verboseLevel > 3) { G4cout <<"G4Incl: bl2->k == 0 after a call to new2. Going back to label pnu449." << G4endl; } goto pnu449; // pion-nucleon collision pnu801: // G4cout <<"(checkpoint 'pnu801)" << G4endl; if(verboseLevel > 3) { G4cout <<"Pion-nucleon collision!" << G4endl; } lp = bl9->l1 - ia; dis1 = bl3->x1[bl9->l2]-y1[lp] + (bl1->p1[bl9->l2]/bl1->eps[bl9->l2] - q1[lp]/q4[lp])*tau; dis2 = bl3->x2[bl9->l2]-y2[lp] + (bl1->p2[bl9->l2]/bl1->eps[bl9->l2] - q2[lp]/q4[lp])*tau; dis3 = bl3->x3[bl9->l2]-y3[lp] + (bl1->p3[bl9->l2]/bl1->eps[bl9->l2] - q3[lp]/q4[lp])*tau; dist = dis1*dis1 + dis2*dis2 + dis3*dis3; t[9] = bl1->eps[bl9->l2] + q4[lp]; //t(10)->t[9] t0 = 1.0/t[9]; //t(10)->t[9] b1 = (bl1->p1[bl9->l2] + q1[lp])*t0; b2 = (bl1->p2[bl9->l2] + q2[lp])*t0; b3 = (bl1->p3[bl9->l2] + q3[lp])*t0; s = (1.0 - b1*b1 - b2*b2 - b3*b3)*t[9]*t[9]; //t(10)->t[9] sq = std::sqrt(s); cg = 4+bl1->ind2[bl9->l2]*ipi[lp]; if(verboseLevel > 3) { G4cout <<"Pion-Nucleon collision done! " << G4endl; } if(sq > 3000.0) { if(verboseLevel > 3) { G4cout <<"sq = " << sq << G4endl; } goto pnu832; } if(31.41592*dist > pionNucleonCrossSection(sq)*cg/6.0) { goto pnu832; } if(verboseLevel > 3) { G4cout <<"Going to pnu220!" << G4endl; } goto pnu220; pnu832: // G4cout <<"(checkpoint 'pnu832)" << G4endl; if (bl2->k == 0) { goto pnu230; } if(verboseLevel > 3) { G4cout <<"G4Incl: bl2->k != 0. Going back to pnu44." << G4endl; } goto pnu44; pnu831: // G4cout <<"(checkpoint 'pnu831)" << G4endl; standardRandom(&rndm, &(hazard->igraine[18])); geff = t[9]/sq; //t(10)->t[9] gg = g0; if (sq > 1500.0) { gg=200.0; } // largeur variable du delta (phase space factor G4introduced 4/2001) // (180.**3 = 5832000.) qqq = std::sqrt((std::pow(sq,2) - std::pow((fmp+fmpi),2))*(std::pow(sq,2) - std::pow((fmp-fmpi),2)))/(2.0*sq); psf = std::pow(qqq,3)/(std::pow(qqq,3)+5832000.); tdel = -hc/(gg*psf)*std::log(rndm)*geff; bl1->ind1[bl9->l2] = 1; bl1->ind2[bl9->l2] = bl1->ind2[bl9->l2] + ipi[lp]; nc[bl9->l2] = nc[bl9->l2] + 1; bl1->eps[bl9->l2] = t[9]; //t(10)->t[9] bl1->p1[bl9->l2] = bl1->p1[bl9->l2] + q1[lp]; bl1->p2[bl9->l2] = bl1->p2[bl9->l2] + q2[lp]; bl1->p3[bl9->l2] = bl1->p3[bl9->l2] + q3[lp]; // ce nucleon (ici delta) devient un participant: jparticip[bl9->l2] = 1; if(verboseLevel > 3) { G4cout <<"Particle " << bl9->l2 << " is now participant." << G4endl; } if (ws->nosurf <= 0) { // surface pppp = std::sqrt(std::pow(bl1->p1[bl9->l2],2) + std::pow(bl1->p2[bl9->l2],2) + std::pow(bl1->p3[bl9->l2],2)); rrrr = std::sqrt(std::pow(bl3->x1[bl9->l2],2) + std::pow(bl3->x2[bl9->l2],2) + std::pow(bl3->x3[bl9->l2],2)); if (pppp <= bl10->pf) { xv = pppp/bl10->pf; rcorr = interpolateFunction(xv); if (rrrr > rcorr) { bl3->x1[bl9->l2] = bl3->x1[bl9->l2]*rcorr/rrrr; bl3->x2[bl9->l2] = bl3->x2[bl9->l2]*rcorr/rrrr; bl3->x3[bl9->l2] = bl3->x3[bl9->l2]*rcorr/rrrr; } } // fin surface } // difference with standard cascade : // the delta is located at the nucleon site to avoid problems // with the reflexion on the wall if(lp != npion) { lp1 = lp + 1; // for(G4int i10 = lp1; i10 <= npion; lp1++) { for(G4int i10 = lp1; i10 <= npion; i10++) { ipi[i10-1] = ipi[i10]; ym[i10-1] = ym[i10]; q1[i10-1] = q1[i10]; q2[i10-1] = q2[i10]; q3[i10-1] = q3[i10]; q4[i10-1] = q4[i10]; y1[i10-1] = y1[i10]; y2[i10-1] = y2[i10]; y3[i10-1] = y3[i10]; } } npion = npion-1; ncol = ncol+1; mrpd = mrpd+1; if(bl2->k != 0) { kd = 0; ccr = tau; for(G4int i = 1; i <= bl2->k; i++) { i20 = i - kd; if((bl2->ind[i] == bl9->l1) || (bl2->ind[i] == bl9->l2) || (bl2->jnd[i] == bl9->l1) || (bl2->jnd[i] == bl9->l2)) { kd = kd + 1; } else { bl2->crois[i20] = bl2->crois[i] - ccr; bl2->ind[i20] = bl2->ind[i]; bl2->jnd[i20] = bl2->jnd[i]; } } bl2->k = bl2->k - kd; for(G4int i10 = 1; i10 <= bl2->k; i10++) { if(bl2->ind[i10] <= bl9->l1) { continue; } else { bl2->ind[i10] = bl2->ind[i10] - 1; } } } new1(bl9->l2); if(tdel <= bl4->tmax5) { bl2->k = bl2->k + 1; bl2->crois[bl2->k] = tdel; bl2->ind[bl2->k] = bl9->l2; bl2->jnd[bl2->k] = 0; } bl2->k = bl2->k + 1; bl2->crois[bl2->k] = ref(bl3->x1[bl9->l2], bl3->x2[bl9->l2], bl3->x3[bl9->l2], bl1->p1[bl9->l2], bl1->p2[bl9->l2], bl1->p3[bl9->l2], bl1->eps[bl9->l2],r22); if(verboseLevel > 3) { if(bl2->crois[bl2->k] < 0.0) { G4cout <<"G4Incl: Reflection time < 0! (line 3955)" << G4endl; } } bl2->ind[bl2->k] = bl9->l2; bl2->jnd[bl2->k] = -1; if(verboseLevel > 3) { G4cout <<"G4Incl: Going back to pnu449 at line 3917." << G4endl; } goto pnu449; // Line 3917 // reflection on or transmission through the potential wall pnu600: // G4cout <<"(checkpoint 'pnu600)" << G4endl; // deutons pas bien compris ici cv ? if (npproj[bl9->l1] == 0) { if(verboseLevel > 3) { G4cout <<"G4Incl: npproj[l1] == 0. Going to pnu608." << G4endl; } goto pnu608; } if (bl1->ind1[bl9->l1] != 0) { if(verboseLevel > 3) { G4cout <<"wrong reentering particle (ind1[l1] != 0)" << G4endl; G4cout <<"ind1[" << bl9->l1 << "] = " << bl1->ind1[bl9->l1] << G4endl; } } if (bl3->x1[bl9->l1]*(bl1->p1[bl9->l1])+bl3->x2[bl9->l1]*(bl1->p2[bl9->l1])+bl3->x3[bl9->l1]*(bl1->p3[bl9->l1]) > 0.0) { if(verboseLevel > 3) { G4cout <<"wrong reentering particle" << G4endl; G4cout <<"particle: l1 = " << bl9->l1 << G4endl; } } if (bl1->ind2[bl9->l1] == 1) { //then npenter=npenter+1; } else { nnenter=nnenter+1; } // endif var_ab = std::pow(bl1->p1[bl9->l1],2) + std::pow(bl1->p2[bl9->l1],2) + std::pow(bl1->p3[bl9->l1],2); gpsg = 0.0; if (var_ab > 0.0) { gpsg = std::sqrt((std::pow(bl1->eps[bl9->l1]+v0,2)-pm2)/var_ab); } bl1->p1[bl9->l1] = gpsg*(bl1->p1[bl9->l1]); bl1->p2[bl9->l1] = gpsg*(bl1->p2[bl9->l1]); bl1->p3[bl9->l1] = gpsg*(bl1->p3[bl9->l1]); bl1->eps[bl9->l1] = bl1->eps[bl9->l1] + v0; npproj[bl9->l1] = 0; bl5->nesc[bl9->l1] = 0; // reevaluation of the times tab after entrance of 2nd,..nucleon // of the projectile (goto 602 instead of 607 modif. 13/06/01) goto pnu602; // deutons // pour un non participant la transmission est impossible: pnu608: // G4cout <<"(checkpoint 'pnu608)" << G4endl; if(varavat->kveux == 1) { varavat->del1avat[iavat] = bl1->ind1[bl9->l1]; varavat->energyavat[iavat] = bl1->eps[bl9->l1] - fmp; } if(jparticip[bl9->l1] == 0) { if(verboseLevel > 3) { G4cout <<"G4Incl: jparticip[l1] == 0. Going to pnu601." << G4endl; } goto pnu601; } if(varavat->kveux == 1) { varavat->go_out[iavat]=1; } if (bl1->ind1[bl9->l1] == 0) { goto pnu605; } fm = am(bl1->p1[bl9->l1],bl1->p2[bl9->l1],bl1->p3[bl9->l1],bl1->eps[bl9->l1]); pot = v1; goto pnu606; pnu605: // G4cout <<"(checkpoint 'pnu605)" << G4endl; fm = fmp; pot = v0; pnu606: // G4cout <<"(checkpoint 'pnu606)" << G4endl; if(verboseLevel > 3) { G4cout <<"G4Incl: Now at pnu606. Calculating transmission probability." << G4endl; } tp = transmissionProb(bl1->eps[bl9->l1]-fm,bl1->ind2[bl9->l1],1,itch,bl3->r2,v0); if(varavat->kveux == 1) { varavat->energyavat[iavat] = bl1->eps[bl9->l1] - fm; } standardRandom(&rndm,&(hazard->igraine[10])); if (rndm > tp) { if(verboseLevel > 3) { G4cout <<"G4Incl:" << G4endl; } goto pnu601; } // Commande clusters ou non (1/0)! if(kclst == 0) goto pnu1610; // Cluster goes here! pnu1610: // G4cout <<"(checkpoint 'pnu1610)" << G4endl; // ici la particule l1 s'échappe du noyau: bl5->nesc[bl9->l1] = 1; nbquit = nbquit + 1; itch = itch - (1 + bl1->ind2[bl9->l1])/2; var_ab = std::pow(bl1->p1[bl9->l1],2) + std::pow(bl1->p2[bl9->l1],2) + std::pow(bl1->p3[bl9->l1],2); gpsg = 0.0; if(var_ab > 0.0) { gpsg = std::sqrt((std::pow(bl1->eps[bl9->l1]-pot,2) - fm*fm)/(var_ab)); } bl1->p1[bl9->l1] = gpsg*(bl1->p1[bl9->l1]); bl1->p2[bl9->l1] = gpsg*(bl1->p2[bl9->l1]); bl1->p3[bl9->l1] = gpsg*(bl1->p3[bl9->l1]); bl1->eps[bl9->l1] = bl1->eps[bl9->l1] - pot; // Test for a transparent nucleon for composit beams and stored for FermiBreakup if(bl3->ia1 > 1 && nc[bl9->l1] == 0) { // G4cout <<"(checkpoint 'incripspnu1610)" << G4endl; ips=ips+1; isPartOfSpectatorNucleus[bl9->l1] = true; ps->n_projspec[ips]=bl9->l1; nb_transprojo = nb_transprojo + 1; } // endif // pnu610: goes here // comptage des particules hors du noyau (7/6/2002): // (remnant minimum=1 nucleon) if(nbquit >= (ia-1)) { if(verboseLevel > 3) { G4cout <<"G4Incl: nbquit >= (ia - 1). Going to pnu255." << G4endl; } goto pnu255; } if(verboseLevel > 3) { G4cout <<"G4Incl: Going to pnu 602." << G4endl; } goto pnu602; // here no transmission possible pnu601: // G4cout <<"(checkpoint 'pnu601)" << G4endl; pspr=bl3->x1[bl9->l1]*(bl1->p1[bl9->l1])+bl3->x2[bl9->l1]*(bl1->p2[bl9->l1])+bl3->x3[bl9->l1]*(bl1->p3[bl9->l1]); if(varavat->kveux == 1) { varavat->go_out[iavat]=0; } // surface: modif a.b. pour tenir compte du rayon variable du noyau. // (x2cour remplace r22 le rayon**2 fixe du noyau) x2cour = std::pow(bl3->x1[bl9->l1],2) + std::pow(bl3->x2[bl9->l1],2) + std::pow(bl3->x3[bl9->l1],2); bl1->p1[bl9->l1] = bl1->p1[bl9->l1] - 2.0*(bl3->x1[bl9->l1])*pspr/x2cour; bl1->p2[bl9->l1] = bl1->p2[bl9->l1] - 2.0*(bl3->x2[bl9->l1])*pspr/x2cour; bl1->p3[bl9->l1] = bl1->p3[bl9->l1] - 2.0*(bl3->x3[bl9->l1])*pspr/x2cour; // fin modif surface a.b. pnu602: // G4cout <<"(checkpoint 'pnu602)" << G4endl; if(verboseLevel > 3) { G4cout <<"G4Incl: Now at pnu602." << G4endl; } if(bl2->k != 0) { // GOTO elimination? kd = 0; ccr = tau; for(G4int i = 1; i <= bl2->k; i++) { i20 = i - kd; if((bl2->jnd[i] == bl9->l1) || ((bl2->ind[i] == bl9->l1) && (bl2->jnd[i] != 0))) { kd = kd + 1; continue; } bl2->crois[i20] = bl2->crois[i] - ccr; bl2->ind[i20] = bl2->ind[i]; bl2->jnd[i20] = bl2->jnd[i]; } bl2->k = bl2->k - kd; if (bl5->nesc[bl9->l1] != 0) { // modif 10/02 pour logique des clusters (nesc()=2!) goto pnu613; } } if(verboseLevel > 3) { G4cout <<"G4Incl: Now calling new1(l1) (new1(" << bl9->l1 << "))" << G4endl; } new1(bl9->l1); if(verboseLevel > 3) { G4cout <<"G4Incl: Now calling ref." << G4endl; G4cout <<"x1 = " << bl3->x1[bl9->l1] <<" x2 = " << bl3->x2[bl9->l1] <<" x3 = " << bl3->x3[bl9->l1] << G4endl; G4cout <<"p1 = " << bl1->p1[bl9->l1] <<" p2 = " << bl1->p2[bl9->l1] <<" p3 = " << bl1->p3[bl9->l1] <<" eps = " << bl1->eps[bl9->l1] << G4endl; } tref = ref(bl3->x1[bl9->l1],bl3->x2[bl9->l1],bl3->x3[bl9->l1],bl1->p1[bl9->l1],bl1->p2[bl9->l1],bl1->p3[bl9->l1],bl1->eps[bl9->l1],r22); // line 4101 if(verboseLevel > 3) { G4cout <<"Returned from function ref. tref = " << tref << G4endl; } if(verboseLevel > 3) { if(tref < 0.0) { G4cout <<"G4Incl: Reflection time < 0 (line 4101)!" << G4endl; G4cout <<"G4Incl: bl1->eps[" << bl9->l1 << "] = " << bl1->eps[bl9->l1] << G4endl; } } if (tref > bl4->tmax5) { goto pnu615; } bl2->k = bl2->k + 1; bl2->crois[bl2->k] = tref; bl2->ind[bl2->k] = bl9->l1; bl2->jnd[bl2->k] = -1; pnu615: // G4cout <<"(checkpoint 'pnu615)" << G4endl; if(verboseLevel > 3) { G4cout <<"G4Incl: Now at pnu615." << G4endl; } if (npion == 0) { goto pnu613; } if (bl1->ind1[bl9->l1] == 1) { goto pnu613; } for(G4int k20 = 1; k20 <= npion; k20++) { //do 614 k20=1,npion new3(y1[k20], y2[k20], y3[k20], q1[k20], q2[k20], q3[k20], q4[k20], k20, bl9->l1); } pnu613: // G4cout <<"(checkpoint 'pnu613)" << G4endl; if(verboseLevel > 3) { G4cout <<"G4Incl: Now at pnu613." << G4endl; } if (bl2->k == 0) { goto pnu230; } if(verboseLevel > 3) { G4cout <<"G4Incl. bl2->k != 0. Going back to pnu449 from line 4077." << G4endl; G4cout <<"G4Incl: bl2->k = " << bl2->k << G4endl; for(G4int myindex = 0; myindex <= bl2->k; myindex++) { G4cout <<"index = " << myindex << " ind = " << bl2->ind[myindex] << " jnd = " << bl2->jnd[myindex] << " crois = " << bl2->crois[myindex] << G4endl; if(bl2->crois[myindex] < 0.0) { G4cout <<"Negative time!!! Dumping information on collision: " << G4endl; G4int part1 = bl2->ind[myindex]; G4int part2 = bl2->jnd[myindex]; G4cout <<"particle 1 index = " << bl2->ind[myindex] << " \t particle 2 index = " << bl2->jnd[myindex] << G4endl; if(part1 >= 0) { G4cout <<"Particle 1: " << G4endl; G4cout <<"p1 = " << bl1->p1[part1] <<"p2 = " << bl1->p2[part1] <<"p3 = " << bl1->p3[part1] <<" eps = " << bl1->eps[part1] << G4endl; G4cout <<"x1 = " << bl3->x1[part1] <<"x2 = " << bl3->x2[part1] <<"x3 = " << bl3->x3[part1] << G4endl; } if(part2 >= 0) { G4cout <<"Particle 2: " << G4endl; G4cout <<"p1 = " << bl1->p1[part2] <<"p2 = " << bl1->p2[part2] <<"p3 = " << bl1->p3[part2] <<" eps = " << bl1->eps[part2] << G4endl; G4cout <<"x1 = " << bl3->x1[part2] <<"x2 = " << bl3->x2[part2] <<"x3 = " << bl3->x3[part2] << G4endl; } } } } goto pnu449; // Line 4077 // decay of the surviving deltas pnu230: // G4cout <<"(checkpoint 'pnu230)" << G4endl; if(verboseLevel > 3) { G4cout <<"G4Incl: Now at pnu230." << G4endl; } // decay of the surviving deltas pnu255: // G4cout <<"(checkpoint 'pnu255)" << G4endl; if(verboseLevel > 3) { G4cout <<"G4Incl: Now at pnu6255." << G4endl; } if (k3 == 1) { goto pnu256; } if (k4 == 0) { goto pnu256; } npidir = npion; idq = 0; destar = 0.; for(G4int i = 1; i <= ia; i++) { G4int iblcdpp=0; if (bl1->ind1[i] == 0) { continue; } npion = npion + 1; var_ab = std::pow(bl1->eps[i],2) - std::pow(bl1->p1[i],2) - std::pow(bl1->p2[i],2) - std::pow(bl1->p3[i],2); ym[npion] = 0.0; if(var_ab > 0.0) { ym[npion] = std::sqrt(var_ab); } xy1 = bl1->p1[i]; xy2 = bl1->p2[i]; xy3 = bl1->p3[i]; xye = bl1->eps[i]; ichd=bl1->ind2[i]; if(varavat->kveux == 1) { iavat = iavat + 1; varavat->timeavat[iavat] = tim; varavat->l1avat[iavat] = i; varavat->l2avat[iavat] = -2; varavat->energyavat[iavat] = ym[npion]; varavat->bloc_paul[iavat] = 0; varavat->bloc_cdpp[iavat] = 0; varavat->del1avat[iavat] = bl1->ind1[bl9->l1]; varavat->jpartl1[iavat] = 1; varavat->jpartl2[iavat] = 0; } decay2(&(bl1->p1[i]), &(bl1->p2[i]), &(bl1->p3[i]), &(bl1->eps[i]), &(q1[npion]), &(q2[npion]), &(q3[npion]), &(q4[npion]), &(ym[npion]), &fmp, &fmpi, &(bl9->hel[i])); if(verboseLevel > 3) { G4cout <<"Quantities after decay2: " << G4endl; G4cout <<"i = " << i << " bl1->p1[i] = " << bl1->p1[i] << " bl1->p2[i] = " << bl1->p2[i] << " bl1->p3[i] = " << bl1->p3[i] << " bl1->eps[i] = " << bl1->eps[i] << G4endl; } // C 6/08/09; Don't have to check CDPP for the forced decay of a DELTA OUTSIDE! // IF(NESC(I).EQ.1) GO TO 1850 // C------ // C On teste CDPP apres la decroissance forcee June/2005 (AB-CV) // C Si rejet de la decroissance -> delta devient nucleon sans pion // C et toute l'energie en exces est mise en energie d'excitation du noyau // C On respecte aussi la conservation de charge (Z du remnant!) // C Le decay ne peut conduire a un noyau de A nucleons // C sous l'energie de Fermi et dans une config. d'energie inferieure a // C EFER-(IA2-NBALTTF)*TF). // EGS=0. // NBALTTF=0 // DO II=1,IA // IF(NESC(II).EQ.0) THEN // IF(SQRT(P1(II)**2+P2(II)**2+P3(II)**2).LT.PF) THEN // NBALTTF=NBALTTF+1 // EGS=EGS+EPS(II)-FMP // ENDIF // ENDIF // END DO // IF(EGS.GE.(EFER-(IA2-NBALTTF)*TF)) GO TO 1850 // C ATTENTION, logique negative!!! Liberer le goto si on veut supprimer la // C sequence precedente (CDPP sur Delta-> pi N) // C GO TO 1850 // C Ici ce decay est interdit par CDPP. // C Restitution du Delta: un neutron au repos et correction conservee pour // C la charge IDQ et l'energie d'excitation DESTAR du remnant. On viole donc // C un peu la conservation d'impulsion, mais semble moins grave que de convertir // C la masse d'un pion en impulsion d'un nucleon unique.... // IBLCDPP=1 !flag de blocage par CDPP // IND1(i) = 0 !identif delta (nucleon) // IND2(i) = -1 !isospin du neutron // IDQ = IDQ + (ICHD+1)/2 // p1(i)=0. !impulsion energie // p2(i)=0. // p3(i)=0. // eps(i)=FMP // DESTAR = DESTAR + xye - FMP // NPION=NPION-1 !pas le dernier pion // 1850 CONTINUE // C------ if(bl5->nesc[i] == 0) { idecf = 1; } if (ws->nosurf <= 0) { // surface if (bl5->nesc[i] == 0.0) { pppp = std::sqrt(std::pow(bl1->p1[i],2) + std::pow(bl1->p2[i],2) + std::pow(bl1->p3[i],2)); rrrr = std::sqrt(std::pow(bl3->x1[i],2) + std::pow(bl3->x2[i],2) + std::pow(bl3->x3[i],2)); if (pppp <= bl10->pf) { xv = pppp/bl10->pf; rcorr = interpolateFunction(xv); if (rrrr > rcorr) { //then bl3->x1[i] = bl3->x1[i]*rcorr/rrrr; bl3->x2[i] = bl3->x2[i]*rcorr/rrrr; bl3->x3[i] = bl3->x3[i]*rcorr/rrrr; } } } // fin surface } if(iblcdpp == 1) continue; // goto pnu257; if (bl1->ind2[i]*(bl1->ind2[i]) == 9) { goto pnu280; } standardRandom(&rndm, &(hazard->ial)); if (rndm*3. < 1.0) { goto pnu283; } ipi[npion] = 0; goto pnu285; pnu283: // G4cout <<"(checkpoint 'pnu283)" << G4endl; if(verboseLevel > 3) { G4cout <<"G4Incl: Now at pnu283." << G4endl; } ipi[npion] = bl1->ind2[i]*2; bl1->ind2[i] = -1*(bl1->ind2[i]); goto pnu285; pnu280: // G4cout <<"(checkpoint 'pnu285)" << G4endl; if(verboseLevel > 3) { G4cout <<"G4Incl: Now at pnu280." << G4endl; } bl1->ind2[i] = bl1->ind2[i]/3; ipi[npion] = 2*(bl1->ind2[i]); pnu285: // G4cout <<"(checkpoint 'pnu285)" << G4endl; if(verboseLevel > 3) { G4cout <<"G4Incl: Now at pnu285." << G4endl; } y1[npion] = bl3->x1[i]; y2[npion] = bl3->x2[i]; y3[npion] = bl3->x3[i]; } if(verboseLevel > 3) { G4cout <<"out of the loop..." << G4endl; } if(varavat->kveux == 1) { varavat->bavat = b; varavat->nopartavat = nopart; varavat->ncolavat = ncol; varavat->nb_avat = iavat; } // final properties of the incoming nucleon and of the remnant // before evaporation // tableau des energies a la fin (avatar.hbk) if(varavat->kveux == 1) { for(G4int i = 1; i <= ia; i++) { if(bl5->nesc[i] == 0) { if(jparticip[i] == 1) { varavat->epsf[i] = bl1->eps[i]; } else { varavat->epsf[i] = 0.0; } } else { varavat->epsf[i] = 0.0; } } } pnu256: // G4cout <<"(checkpoint 'pnu256)" << G4endl; if(verboseLevel > 3) { G4cout <<"G4Incl: Now at pnu256." << G4endl; } elead = 0.0; lead = 0; npx = 0; erem = 0.; // Excitation energy of the final delta of blocked decay: (AB CV 6/2005) erem = erem + destar; izrem = 0; // Correct the charge of the remnant if the final delta is blocked: (A.B., C.V. 6/2005) izrem = izrem + idq; inrem = 0; iarem = 0; rcm1 = 0.0; rcm2 = 0.0; rcm3 = 0.0; prem1 = 0.0; prem2 = 0.0; prem3 = 0.0; pout1 = 0.0; pout2 = 0.0; pout3 = 0.0; eout = 0.0; p1spec=0.; p2spec=0.; p3spec=0.; cmultn = 0.0; if (kindstruct->kindf7 <= 2 && kindstruct->kindf7 > 0) { if (ncol == 0 || nc[1] == 0) { // then nc(1)->nc[0] if(verboseLevel > 3) { G4cout <<"no collisioms" << G4endl; } goto pnu9100; } } else { if (kindstruct->kindf7 <= 5 && kindstruct->kindf7 > 0) { if (ncol == 0) { if(verboseLevel > 3) { G4cout <<"no collisioms" << G4endl; } goto pnu9100; } } else { // ici faisceau composite: modif a.b. 2/2002 pour tous les composites: nsum_col = 0; for(G4int i = 1; i <= bl3->ia1; i++) { nsum_col = nsum_col + nc[i]; } if (ncol == 0 || nsum_col == 0) { //then goto pnu9100; } } } goto pnu9101; // pour eviter renvoi des resultats du run precedent cv 20/11/98 pnu9100: // G4cout <<"(checkpoint 'pnu9100)" << G4endl; iarem = bl3->ia2; izrem = iz2; esrem = 0.0; erecrem = 0.0; nopart = -1; // fin ajout cv if(verboseLevel > 3) { G4cout <<"End of algorithm after pnu9100." << G4endl; } goto pnureturn; pnu9101: // G4cout <<"(checkpoint 'pnu9101)" << G4endl; if(verboseLevel > 3) { G4cout <<"G4Incl: Now at pnu9101." << G4endl; } nopart = 0; ekout = 0.0; if(kclst != 0) { // Clusters go here! } // Treat here the projectile spectators (including transparents): projo_spec(bl3->ia1,ips,fmpinc,pinc,tlab); for(G4int i = 1; i <= ia; i++) { // do 258 i=1,ia // pnu259: if (bl5->nesc[i] == 0) goto pnu254; if (bl5->nesc[i] > 1) continue; // on evite les nucleons des clusters // here nesc=1 or negative value (emitted nucleons, spectators included) xl1_i=bl3->x2[i]*bl1->p3[i]-bl3->x3[i]*bl1->p2[i]; // moment angulaire emporte xl2_i=bl3->x3[i]*bl1->p1[i]-bl3->x1[i]*bl1->p3[i]; xl3_i=bl3->x1[i]*bl1->p2[i]-bl3->x2[i]*bl1->p1[i]; xl1=xl1-xl1_i; xl2=xl2-xl2_i; xl3=xl3-xl3_i; // ici ajout de pout cv le 5/7/95 pout1=pout1+bl1->p1[i]; pout2=pout2+bl1->p2[i]; pout3=pout3+bl1->p3[i]; // write(6,*)'eout nucleon',eout eout = eout + bl1->eps[i]-fmp; ic33=(bl1->ind2[i]+3)/2; // here we don't copy the spectators of the projectile bound in a // spectator nucleus (treated by the deexcitation module): if(kindstruct->kindf7 < 0 && i <= bl3->ia1 && ps->a_projspec != 0) { for(G4int iloc = 1; iloc <= ps->a_projspec; iloc++) { //do iloc=1,a_projspec if(i == ps->n_projspec[iloc]) { p1spec=p1spec+bl1->p1[i]; p2spec=p2spec+bl1->p2[i]; p3spec=p3spec+bl1->p3[i]; // for balance, a transparent from projectile is out: if(i > ips-nb_transprojo) ekout=ekout+bl1->eps[i]-fmp; goto pnu258_end_of_outer_loop; // continue; } // endif } // enddo } // endif // if (isPartOfSpectatorNucleus[i]) goto pnu258_end_of_outer_loop; nopart=nopart+1; ekout=ekout+bl1->eps[i]-fmp; kind[nopart]=3-ic33; // spectators of composite projectiles (7/2006, ab) if(npproj[i] == 1) kind[nopart] = -kind[nopart]; ep[nopart]=bl1->eps[i]-fmp; bmass[nopart]=fmp; ptotl=std::sqrt(std::pow(bl1->p1[i],2) + std::pow(bl1->p2[i],2)+std::pow(bl1->p3[i],2)); alpha[nopart]=bl1->p1[i]/ptotl; beta[nopart]=bl1->p2[i]/ptotl; gam[nopart]=bl1->p3[i]/ptotl; continue; pnu254: t[4]=bl3->x1[i]*bl3->x1[i]+bl3->x2[i]*bl3->x2[i]+bl3->x3[i]*bl3->x3[i]; erem=erem+bl1->eps[i]-fmp; rcm1=rcm1+bl3->x1[i]; rcm2=rcm2+bl3->x2[i]; rcm3=rcm3+bl3->x3[i]; prem1=prem1+bl1->p1[i]; prem2=prem2+bl1->p2[i]; prem3=prem3+bl1->p3[i]; izrem=izrem+(1+bl1->ind2[i])/2; iarem=iarem+1; pnu258_end_of_outer_loop: continue; } // 258 continue //pnu258: // G4cout <<"(checkpoint 'pnu258)" << G4endl; // correction pions 21/3/95 jc ichpion = 0; if(npion != 0) { for(G4int ipion = 1; ipion <= npion; ipion++) { pout1 = pout1 + q1[ipion]; pout2 = pout2 + q2[ipion]; pout3 = pout3 + q3[ipion]; eout = eout + q4[ipion]; xl1 = xl1 - y2[ipion]*q3[ipion] + y3[ipion]*q2[ipion]; xl2 = xl2 - y3[ipion]*q1[ipion] + y1[ipion]*q3[ipion]; xl3 = xl3 - y1[ipion]*q2[ipion] + y2[ipion]*q1[ipion]; ichpion = ichpion + ipi[ipion]/2; nopart = nopart + 1; kind[nopart] = 4 - ipi[ipion]/2; ptotl = std::sqrt(std::pow(q1[ipion],2) + std::pow(q2[ipion],2) + std::pow(q3[ipion],2)); ep[nopart] = q4[ipion] - fmpi; bmass[nopart] = fmpi; ekout = ekout + ep[nopart]; alpha[nopart] = q1[ipion]/ptotl; beta[nopart] = q2[ipion]/ptotl; gam[nopart] = q3[ipion]/ptotl; // nopart++; } } // fin correction pions sur impulsion et moment angulaire et charge // ici ajout de pfrem cv le 5/7/95 pfrem1 = -pout1; pfrem2 = -pout2; pfrem3 = pinc - pout3; inrem = iarem - izrem; iejp = iz2 - izrem; iejn = bl3->ia2 - inrem - iz2; irem = inrem + izrem; // intrinsic momentum of the remnant (a.b. 05/2001): // momentum of projectile minus momentum of all outgoing particles // minus angular momentum of the remnant computed // from the sum of all inside nucleons. // 2675 c xl1=xl1-rcm2/irem*prem3+rcm3/irem*prem2 // 2676 c xl2=xl2-rcm3/irem*prem1+rcm1/irem*prem3 // 2677 c xl3=xl3-rcm1/irem*prem2+rcm2/irem*prem1 // 2678 c here the remnant momentum is pin - sig(pout), // 2679 c and the distance with respect to the barycenter of the actual target xl1 = xl1 - (rcm2/irem - x2_target)*pfrem3+(rcm3/irem - x3_target)*pfrem2; xl2 = xl2 - (rcm3/irem - x3_target)*pfrem1+(rcm1/irem - x1_target)*pfrem3; xl3 = xl3 - (rcm1/irem - x1_target)*pfrem2+(rcm2/irem - x2_target)*pfrem1; l = int(std::sqrt(xl1*xl1 + xl2*xl2 + xl3*xl3)/hc + 0.5); iej = bl3->ia2 - irem; eh5 = erem - std::pow(double(irem)/double(a2),1.666667)*efer; if(verboseLevel > 3) { G4cout <<"erem used for excitation energy calculation = " << erem << G4endl; G4cout <<"irem used for excitation energy calculation = " << irem << G4endl; G4cout <<"a2 used for excitation energy calculation = " << a2 << G4endl; G4cout <<"eh5 used for excitation energy calculation = " << eh5 << G4endl; } sepa = (bl3->ia2 - irem)*(v0 - tf); eh6 = eh5; // deutons ajout beproj ?????? on retire beproj (18/06/2002 ab cv) // eh5=erem-efer-beproj+(ia2-irem)*tf eh5 = erem - efer + (bl3->ia2 - irem)*tf; if (eh5 < 0.0) { eh5 = 0.00000001; } xlab = tlab - eout - eh5 - sepa; ecoreh5 = 0.0; if (iqe == 1) { eh5=0.00000001; } else { if (eh5 < 0.0) { if (npion == 0) { nopart = -1; if(verboseLevel > 3) { G4cout <<"npion == 0" << G4endl; G4cout <<"End of algorithm because npion == 0" << G4endl; } goto pnureturn; } else { ecoreh5 = -eh5; eh5 = 0.000000001; } } } if (idecf != 0 && eh5 < 0.0) { ecoreh5 = -eh5; eh5 = 0.000001; } iarem = irem; pfreml2 = std::pow(pfrem1,2) + std::pow(pfrem2,2) + std::pow(pfrem3,2); if (pfreml2 > 1.0e-12) { pfreml = std::sqrt(pfreml2); alrem = pfrem1/pfreml; berem = pfrem2/pfreml; garem = pfrem3/pfreml; } else { alrem = 0.0; berem = 0.0; garem = 1.0; } erecrem = pfreml2/(std::sqrt(pfreml2 + std::pow((fmp*iarem),2)) + fmp*iarem); if(iarem == 1) { erecrem = erecrem + eh5; } // correction recul erecg = erecrem + ecoreh5; // correction energie d'excitation pour une absorption (a.b., c.v. 2/2002) esrem = eh5; if (ekout < 0.001) { if(verboseLevel > 3) { G4cout <<"ekout < 0.001" << G4endl; G4cout <<"End of algorithm because kout < 0.001" << G4endl; } goto pnureturn; } // on ote l'instruction precedente car esrem toujours nulle 14/9/99 if (erecg > 0.25) { fffc = (ekout - erecg)/ekout; if (fffc < 0.0) { fffc = 0.0; } for(G4int ipart = 0; ipart <= nopart; ipart++) { ep[ipart] = ep[ipart]*fffc; } } // modif boudard juillet 99 (il faut tenir compte de la renormalisation // des energies pour les impulsions.) pfrem1= -p1spec; pfrem2= -p2spec; pfrem3=pinc-p3spec; // if(useProjSpect) { // pfrem1 = -p1_spec; // pfrem2 = -p2_spec; // pfrem3 = pinc - p3_spec; // } else { // pfrem1 = 0.0; // pfrem2 = 0.0; // pfrem3 = pinc; // } for(G4int ipart = 0; ipart <= nopart; ipart++) { G4double xmodp = 0.0; if(ep[ipart] < 0.0) { // Safeguard against particles with negative energy xmodp = 0.0; G4cout <<"The energy of particle " << ipart << " is negative (" << ep[ipart] << "). Forcing xmodp = " << xmodp << "." << G4endl; } else { xmodp = std::sqrt(ep[ipart]*(2.0*bmass[ipart] + ep[ipart])); } pfrem1 = pfrem1 - alpha[ipart]*xmodp; pfrem2 = pfrem2 - beta[ipart]*xmodp; pfrem3 = pfrem3 - gam[ipart]*xmodp; } // fin modif a.b. pfreml2 = std::pow(pfrem1,2) + std::pow(pfrem2,2) + std::pow(pfrem3,2); erecrem = pfreml2/(std::sqrt(pfreml2 + std::pow((fmp*iarem),2)) + fmp*iarem); if (pfreml2 > 1.0e-12) { pfreml = std::sqrt(pfreml2); alrem = pfrem1/pfreml; berem = pfrem2/pfreml; garem = pfrem3/pfreml; } else { alrem = 0.0; berem = 0.0; garem = 1.0; } // fin modif a.b. pour incl3 esrem = eh5; // if the remnant is a nucleon, no excitation energy if(iarem == 1) { esrem = 0.0; } goto pnureturn; if(verboseLevel > 3) { G4cout <<"Reached end of routine..." << G4endl; } goto pnureturn; if(verboseLevel > 3) { G4cout <<"ia1 > 1 ! " << G4endl; } pnureturn: // G4cout <<"(checkpoint 'pnureturn)" << G4endl; // if(useProjSpect) { // varntp->spectatorA = a_projspec; // varntp->spectatorZ = z_projspec; // varntp->spectatorEx = ex_projspec; // varntp->spectatorT = t_projspec; // varntp->spectatorM = m_projspec; // varntp->spectatorP1 = p1_projspec; // varntp->spectatorP2 = p1_projspec; // varntp->spectatorP3 = p1_projspec; // } (*ibert_p) = ibert; (*nopart_p) = nopart; (*izrem_p) = izrem; (*iarem_p) = iarem; (*esrem_p) = esrem; (*erecrem_p) = erecrem; (*alrem_p) = alrem; (*berem_p) = berem; (*garem_p) = garem; (*bimpact_p) = bimpact; (*l_p) = l; (*xjrem) = 0; (*yjrem) = 0; (*zjrem) = 0; } void G4Incl::collis(G4double *p1_p, G4double *p2_p, G4double *p3_p, G4double *e1_p, G4double *pout11_p, G4double *pout12_p, G4double *pout13_p, G4double *eout1_p, G4double *q1_p, G4double *q2_p, G4double *q3_p, G4double *q4_p, G4int *np_p, G4int *ip_p, G4int *k2_p, G4int *k3_p, G4int *k4_p, G4int *k5_p, G4int *m1_p, G4int *m2_p, G4int *is1_p, G4int *is2_p) { G4double p1 = (*p1_p); G4double p2 = (*p2_p); G4double p3 = (*p3_p); G4double e1 = (*e1_p); G4double debugOutput = 0.0; debugOutput = am(p1,p2,p3,e1); G4double pout11 = (*pout11_p); G4double pout12 = (*pout12_p); G4double pout13 = (*pout13_p); G4double eout1 = (*eout1_p); G4double q1 = (*q1_p); G4double q2 = (*q2_p); G4double q3 = (*q3_p); // G4double q4 = -1*(*q4_p); G4double q4 = (*q4_p); G4int np = (*np_p); G4int ip = (*ip_p); G4int k2 = (*k2_p); G4int k3 = (*k3_p); G4int k4 = (*k4_p); G4int k5 = (*k5_p); G4int m1 = (*m1_p); G4int m2 = (*m2_p); G4int is1 = (*is1_p); G4int is2 = (*is2_p); // Variables: G4double a = 0.0; G4double aaa = 0.0; G4double aac = 0.0; // G4double alog; G4double alphac = 0.0; // G4double amax1; G4double apt = 0.0; G4double argu = 0.0; G4double b = 0.0; G4double btmax = 0.0; G4double cfi = 0.0; G4double cpt = 0.0; G4double ctet = 0.0; G4double e3 = 0.0; G4double ecm = 0.0; G4double ex[3]; G4double ey[3]; G4double ez[3]; G4double qq[3]; for(G4int init_i = 0; init_i < 3; init_i++) { ex[init_i] = 0.0; ey[init_i] = 0.0; ez[init_i] = 0.0; qq[init_i] = 0.0; } G4double f3 = 0.0; G4double f3max = 0.0; G4double fi = 0.0; G4double fracpn = 0.0; G4double heli = 0.0; G4int iexpi = 0; G4int ii = 0; G4int index = 0; G4int index2 = 0; G4int isi = 0; G4double pin = 0.0; G4double pl = 0.0; G4double pnorm = 0.0; // G4double pq = 0.0; G4double psq = 0.0; G4double qq4 = 0.0; G4double ranres = 0.0; G4double rndm = 0.0; G4double s = 0.0; G4double s1 = 0.0; // G4double sel; G4double sfi = 0.0; G4double stet = 0.0; G4double t = 0.0; G4double x = 0.0; G4double xkh = 0.0; G4double xp1 = 0.0; G4double xp2 = 0.0; G4double xp3 = 0.0; G4double xx = 0.0; G4double y = 0.0; G4double yn = 0.0; G4double z = 0.0; G4double zn = 0.0; G4double zz = 0.0; // !!! q4 = -1*q4; // 2837 c // 2838 c collis p-n17770 // 2839 subroutine collis(p1,p2,p3,e1,pout11,pout12,pout13,eout1,q1,q2,q3,p-n17780 // 2840 -q4,np,ip,k2,k3,k4,k5,m1,m2,is1,is2) p-n17790 // 2841 common/bl6/xx10,isa p-n17800 // 2842 common/bl8/rathr,ramass p-n17810 // 2843 common/hazard/ial,iy1,iy2,iy3,iy4,iy5,iy6,iy7,iy8,iy9,iy10, // 2844 s iy11,iy12,iy13,iy14,iy15,iy16,iy17,iy18,iy19 // 2845 common/bl9/hel(300),l1,l2 // 2846 dimension ex(3),ey(3),ez(3),qq(3) p-n17820 // 2847 data xm,xm2,xmdel,ezero,xpi/938.2796,8.8037e5,1232.,1876.6,138./ p-n17830 G4double xm = 938.2796; G4double xm2 = 8.8037e5; G4double xmdel = 1232.0; G4double xpi = 138.0; // 2848 c data iy1,iy2,iy3,iy4,iy5,iy6,iy7,iy8,iy10,iy11,iy12,iy13/ p-n17840 // 2849 c 1 12345,22345,32345,42345,52345,62345,72345,82345,34567,47059,21033p-n17850 // 2850 c 1 12345,22345,32345,42345,52345,62345,72345,82341,34567,47059,21033p-n17850 // 2851 c 2,32835/ p-n17860 // 2852 c data iy9/15637/ // 2853 pcm(e,a,c)=0.5*std::sqrt((e**2-(a+c)**2)*(e**2-(a-c)**2))/e p-n17870 G4int iso = is1 + is2; np = 0; psq = p1*p1 + p2*p2 + p3*p3; pnorm = std::sqrt(psq); ecm = e1 + eout1; if(ecm < 1925.0) { goto collis160; } if (k3 == 1) { goto collis17; } if(ecm < (2065.0 + bl8->rathr)) { goto collis17; } if((k4-1) < 0) { goto collis18; } if((k4-1) == 0) { goto collis10; } if((k4-1) > 0) { goto collis20; } collis10: if((m1+m2-1) < 0) { goto collis19; } if((m1+m2-1) == 0) { goto collis14; } if((m1+m2-1) > 0) { goto collis13; } collis19: if((ecm-2170.4-bl8->ramass) <= 0) { goto collis17; } if((ecm-2170.4-bl8->ramass) > 0) { goto collis18; } collis20: if((m1+m2-1) < 0) { goto collis18; } if((m1+m2-1) == 0) { goto collis14; } if((m1+m2-1) > 0) { goto collis13; } // test on the recombination possibility for the n-delta system collis14: if (k5 == 0) { goto collis170; } standardRandom(&rndm, &(hazard->igraine[10])); s1 = lowEnergy(ecm, 1, iso); if(m1 != 0) { bl6->xx10=std::sqrt(e1*e1-psq); bl6->isa=is1; } else { bl6->xx10 = std::sqrt(std::pow(eout1,2)-psq); bl6->isa = is2; } s = s1 + srec(ecm,bl6->xx10, iso,int(bl6->isa)); a = (s - s1)/s; if((rndm-a) <= 0) { goto collis170; } if((rndm-a) > 0) { goto collis17; } // test for the behaviour of the delta-delta system collis13: if (k5 == 0) { goto collis160; } goto collis17; // test on the inelasticity collis18: standardRandom(&rndm, &(hazard->igraine[0])); s = lowEnergy(ecm,0,iso); a = deltaProductionCrossSection(ecm,iso); a = s/(s+a); if(rndm > a) { goto collis100; } // elastic scattering // fit of the b parameter in the differential x-section: // taken from :j.c.,d.l'hote, j.vandermeulen,nimb111(1996)215 // for pn :improvement of the backward scattering according // j.c et al, prc56(1997)2431 collis17: pl = 0.5*ecm*std::sqrt(std::pow(ecm,2) - 4.0*xm2)/xm; x = 0.001*pl; if (iso == 0) { goto collis80; } if (pl > 2000.0) { goto collis81; } x = x*x; x = std::pow(x,4); b = 5.5e-6*x/(7.7+x); goto collis82; collis81: b = (5.34 + 0.67*(x-2.0))*1.e-6; goto collis82; collis80: if (pl < 800.) { b = (7.16 - 1.63*x)*1.e-6; b = b/(1.0 + std::exp(-(x - 0.45)/0.05)); } else { if (pl < 1100.) { b = (9.87 - 4.88*x)*1.e-6; } else { b = (3.68 + 0.76*x)*1.e-6; } } collis82: debugOutput = am(p1,p2,p3,e1); btmax = 4.0*psq*b; z = std::exp(-btmax); standardRandom(&rndm, &(hazard->igraine[1])); ranres = rndm; y = 1.0 - rndm*(1.0 - z); t = std::log(y)/b; iexpi = 0; if (((m1+m2) == 0) && (iso == 0)) { apt = 1.0; if (pl > 800.) { apt = std::pow((800.0/pl),2); cpt = amax1(6.23*std::exp(-1.79*x),0.3); alphac = 100.0*1.e-6; aaa = (1 + apt)*(1 - std::exp(-btmax))/b; argu = psq*alphac; if (argu >= 8) { argu = 0.0; } else { argu = std::exp(-4.0*argu); } aac = cpt*(1.0 - argu)/alphac; fracpn = aaa/(aac + aaa); standardRandom(&rndm, &(hazard->igraine[7])); if (rndm > fracpn) { z = std::exp(-4.0*psq*alphac); iexpi = 1; // y = 1.0 - ranres*(10.0 - z); y = 1.0 - ranres*(1.0 - z); t = std::log(y)/alphac; } } } ctet = 1.0 + 0.5*t/psq; if(std::fabs(ctet) > 1.0) { ctet = sign(1.0,ctet); } stet = std::sqrt(1.0 - std::pow(ctet,2)); standardRandom(&rndm, &(hazard->igraine[2])); fi = 6.2832*rndm; cfi = std::cos(fi); sfi = std::sin(fi); xx = p1*p1 + p2*p2; zz = p3*p3; debugOutput = am(p1,p2,p3,e1); if(xx >= (zz*1.0e-8)) { yn=std::sqrt(xx); zn=yn*pnorm; ez[0] = p1/pnorm; // ez(1) -> ez[0] and so on... ez[1] = p2/pnorm; ez[2] = p3/pnorm; ex[0] = p2/yn; ex[1] = -p1/yn; ex[2] = 0.0; ey[0] = p1*p3/zn; ey[1] = p2*p3/zn; ey[2] = -xx/zn; p1 = (ex[0]*cfi*stet + ey[0]*sfi*stet + ez[0]*ctet)*pnorm; p2 = (ex[1]*cfi*stet + ey[1]*sfi*stet + ez[1]*ctet)*pnorm; p3 = (ex[2]*cfi*stet + ey[2]*sfi*stet + ez[2]*ctet)*pnorm; } else { p1 = p3*cfi*stet; p2 = p3*sfi*stet; p3 = p3*ctet; } pout11 = -p1; pout12 = -p2; pout13 = -p3; debugOutput = am(p1,p2,p3,e1); // backward scattering according the parametrization of ref // prc56(1997)1 if (m1+m2 == 1) goto collis133; if (iso != 0) goto collis133; standardRandom(&rndm,&(hazard->igraine[7])); apt = 1.0; if (pl > 800.0) { apt = std::pow(800.0/pl,2); } //endif if (iexpi == 1 || rndm > 1.0/(1.0+apt)) { // then ii = is1; is1 = is2; is2 = ii; } // endif collis133: debugOutput = am(p1,p2,p3,e1); goto exitRoutine; // delta production // the production is not isotropic in this version // it has the same std::exp(b*t) structure as the nn elastic scatteringp-n19170 // (formula 2.3 of j.cugnon et al, nucl phys a352(1981)505) // parametrization of b taken from ref. prc56(1997)2431 collis100: if (k4 != 1) { goto collis101; } xmdel = 1232.0 + bl8->ramass; goto collis103; collis101: //call ribm(rndm,iy10) standardRandom(&rndm, &(hazard->igraine[9])); y = std::tan(3.1415926*(rndm - 0.5)); x = 1232.0 + 0.5*130.0*y + bl8->ramass; if (x < (xm+xpi+2.0)) { goto collis101; } if (ecm < (x+xm+1.)) { goto collis101; } // generation of the delta mass with the penetration factor // (see prc56(1997)2431) y = std::pow(ecm,2); q2 = (y - std::pow(1076.0,2))*(y - std::pow(800.0,2))/y/4.0; q3 = std::pow((std::sqrt(q2)),3); f3max = q3/(q3 + std::pow(180.0,3)); y = std::pow(x,2); q2 = (y - std::pow(1076.0,2))*(y - std::pow(800.0,2))/y/4.0; q3 = std::pow((std::sqrt(q2)),3); f3 = q3/(q3 + std::pow(180.0,3)); standardRandom(&rndm, &(hazard->igraine[10])); if (rndm > (f3/f3max)) { goto collis101; } xmdel = x; collis103: pin = pnorm; pnorm = pcm(ecm,xm,xmdel); if (pnorm <= 0) { pnorm = 0.000001; } index = 0; index2 = 0; standardRandom(&rndm, &(hazard->igraine[3])); if (rndm < 0.5) { index = 1; } if (iso == 0) { standardRandom(&rndm, &(hazard->igraine[4])); if (rndm < 0.5) { index2 = 1; } } standardRandom(&rndm, &(hazard->igraine[5])); x = 0.001*0.5*ecm*std::sqrt(std::pow(ecm,2) - 4.0*xm2)/xm; if(x < 1.4) { b = (5.287/(1.0 + std::exp((1.3 - x)/0.05)))*1.e-6; } else { b = (4.65 + 0.706*(x - 1.4))*1.e-6; } xkh = 2.0*b*pin*pnorm; ctet=1.0 + std::log(1.0 - rndm*(1.0 - std::exp(-2.0*xkh)))/xkh; if(std::fabs(ctet) > 1.0) { ctet = sign(1.0,ctet); } stet = std::sqrt(1.0 - std::pow(ctet,2)); standardRandom(&rndm, &(hazard->igraine[6])); fi = 6.2832*rndm; cfi = std::cos(fi); sfi = std::sin(fi); // delta production: correction of the angular distribution 02/09/02 xx = p1*p1 + p2*p2; zz = p3*p3; if(xx >= (zz*1.0e-8)) { yn = std::sqrt(xx); zn = yn*pin; ez[0] = p1/pin; // ez(1) -> ez[0] and so on... ez[1] = p2/pin; ez[2] = p3/pin; ex[0] = p2/yn; ex[1] = -p1/yn; ex[2] = 0.0; ey[0] = p1*p3/zn; ey[1] = p2*p3/zn; ey[2] = -xx/zn; xp1 = (ex[0]*cfi*stet + ey[0]*sfi*stet + ez[0]*ctet)*pnorm; xp2 = (ex[1]*cfi*stet + ey[1]*sfi*stet + ez[1]*ctet)*pnorm; xp3 = (ex[2]*cfi*stet + ey[2]*sfi*stet + ez[2]*ctet)*pnorm; } else { xp1 = pnorm*stet*cfi; xp2 = pnorm*stet*sfi; xp3 = pnorm*ctet; } // end of correction angular distribution of delta production e3 = std::sqrt(xp1*xp1 + xp2*xp2 + xp3*xp3 + xm*xm); if(k4 != 0) { goto collis161; } // decay of the delta particle (k4=0) np = 1; ip = 0; qq[0] = xp1; //qq(1) -> qq[0] qq[1] = xp2; qq[2] = xp3; qq4 = std::sqrt(xp1*xp1 + xp2*xp2 + xp3*xp3 + xmdel*xmdel); heli = std::pow(ctet,2); if(verboseLevel > 3) { G4cout <<"Caling decay2 from collis" << G4endl; } decay2(&qq[0],&qq[1],&qq[2],&qq4,&q1,&q2,&q3,&q4,&xmdel,&xm,&xpi,&heli); if(index != 0) { p1 = qq[0]; //qq(1) -> qq[0] and so on... p2 = qq[1]; p3 = qq[2]; pout11 = -xp1; pout12 = -xp2; pout13 = -xp3; eout1 = e3; } else { pout11 = qq[0]; //qq(1) -> qq[0] and so on... pout12 = qq[1]; pout13 = qq[2]; eout1 = e1; p1 = -xp1; p2 = -xp2; p3 = -xp3; e1 = e3; } debugOutput = am(p1,p2,p3,e1); if (iso == 0) { goto collis150; } if (rndm > 0.333333) { debugOutput = am(p1,p2,p3,e1); goto exitRoutine; } is1 = -is1; ip = -2*is1; collis150: if (index == 1) { debugOutput = am(p1,p2,p3,e1); goto exitRoutine; } if (rndm < 0.5) { goto collis152; } is1 = 1; is2 = 1; ip = -2; debugOutput = am(p1,p2,p3,e1); goto exitRoutine; collis152: is1 = -1; is2 = -1; ip = 2; debugOutput = am(p1,p2,p3,e1); goto exitRoutine; collis160: pout11 = -p1; pout12 = -p2; pout13 = -p3; debugOutput = am(p1,p2,p3,e1); goto exitRoutine; // long-lived delta collis161: if(index != 1) { p1=xp1; p2=xp2; p3=xp3; eout1=e3; e1=ecm-eout1; m1=1; } else { p1=-xp1; p2=-xp2; p3=-xp3; eout1=e3; e1=ecm-eout1; m1=1; } debugOutput = am(p1,p2,p3,e1); // symmetrization of charges in pn -> n delta // the test on "index" above symetrizes the excitation of one // of the nucleons with respect to the delta excitation // (see note 16/10/97) if (iso == 0) { if (index2 == 1) { isi = is1; is1 = is2; is2 = isi; } goto collis160; } bl9->hel[bl9->l1] = std::pow(ctet,2); standardRandom(&rndm, &(hazard->igraine[7])); if (rndm < 0.25) { goto collis160; } is1=3*is1*m1-(1-m1)*is1; is2=3*is2*m2-(1-m2)*is2; goto collis160; // recombination process collis170: pnorm = pcm(ecm,xm,xm); standardRandom(&rndm, &(hazard->igraine[11])); ctet = -1.0 + 2.0*rndm; if(std::fabs(ctet) > 1.0) { ctet = sign(1.0,ctet); } stet = std::sqrt(1.0 - ctet*ctet); standardRandom(&rndm, &(hazard->igraine[12])); fi = 6.2832*rndm; cfi = std::cos(fi); sfi = std::sin(fi); p1 = pnorm*stet*cfi; p2 = pnorm*stet*sfi; p3 = pnorm*ctet; m1 = 0; m2 = 0; e1 = std::sqrt(p1*p1 + p2*p2 + p3*p3 + xm*xm); eout1 = ecm - e1; debugOutput = am(p1,p2,p3,e1); if (iso == 0) { goto collis160; } is1=iso/2; is2=iso/2; goto collis160; exitRoutine: debugOutput = am(p1,p2,p3,e1); (*p1_p) = p1;// Was pq (*p2_p) = p2; (*p3_p) = p3; (*e1_p) = e1; debugOutput = am(pout11,pout12,pout13,eout1); (*pout11_p) = pout11; (*pout12_p) = pout12; (*pout13_p) = pout13; (*eout1_p) = eout1; (*q1_p) = q1; (*q2_p) = q2; (*q3_p) = q3; (*q4_p) = q4; (*np_p) = np; (*ip_p) = np; (*k2_p) = k2; (*k3_p) = k2; (*k4_p) = k4; (*k5_p) = k5; (*m1_p) = m1; (*m2_p) = m2; (*is1_p) = is1; (*is2_p) = is2; } void G4Incl::decay2(G4double *p1_p, G4double *p2_p, G4double *p3_p, G4double *wp_p, G4double *q1_p, G4double *q2_p, G4double *q3_p, G4double *wq_p, G4double *xi_p, G4double *x1_p, G4double *x2_p, G4double *hel_p) { // This routine describes the anisotropic decay of a particle of mass // xi into 2 particles of masses x1,x2 // the anisotropy is supposed to follow a 1+3*hel*(std::cos(theta))**2 // law with respect to the direction of the incoming particle // in the input, p1,p2,p3 is the momentum of particle xi // in the output, p1,p2,p3 is the momentum of particle x1 , while // q1,q2,q3 is the momentum of particle x2 // Temporary variables for input/output data: G4double p1 = (*p1_p); G4double p2 = (*p2_p); G4double p3 = (*p3_p); G4double q1 = (*q1_p); G4double q2 = (*q2_p); G4double q3 = (*q3_p); G4double wp = (*wp_p); G4double wq = (*wq_p); G4double xi = (*xi_p); G4double x1 = (*x1_p); G4double x2 = (*x2_p); G4double hel = (*hel_p); G4double rndm = 0.0; G4double xe = wp; G4double b1 = p1/xe; G4double b2 = p2/xe; G4double b3 = p3/xe; // PK: NaN workaround // if(((std::pow(xi,2)-std::pow(x1+x2,2))*(std::pow(xi,2)-std::pow(x1-x2,2))) < 0) { // xi = xi+x2+100.0; // } // PK G4double xq = pcm(xi,x1,x2); G4double ctet = 0.0, stet = 0.0; G4double fi = 0.0, cfi = 0.0, sfi = 0.0; G4double sal = 0.0, cal = 0.0; G4double t1 = 0.0, t2 = 0.0; G4double w1 = 0.0; G4double beta = 0.0; if(verboseLevel > 3) { G4cout <<"Delta decay in progress: " << G4endl; G4cout <<"Starting values: " << G4endl; G4cout <<"p1 = " << p1 << " p2 = " << p2 << " p3 = " << p3 << " wp = " << wp << G4endl; G4cout <<"q1 = " << q1 << " q2 = " << q2 << " q3 = " << q3 << " wq = " << wq << G4endl; } decay2100: standardRandom(&rndm,&(hazard->igraine[7])); ctet = -1.0 + 2.0*rndm; if(std::abs(ctet) > 1.0) ctet = sign(1.0,ctet); stet = std::sqrt(1.0 - std::pow(ctet, 2)); standardRandom(&rndm,&(hazard->igraine[9])); if (rndm > ((1.0 + 3.0 * hel * std::pow(ctet,2))/(1.0 + 3.0*hel))) goto decay2100; standardRandom(&rndm,&(hazard->igraine[8])); fi = 6.2832*rndm; cfi = std::cos(fi); sfi = std::sin(fi); beta = std::sqrt(b1*b1 + b2*b2 + b3*b3); if (beta < 1.0e-10) goto decay2101; sal = std::sqrt(std::pow(b1, 2) + std::pow(b2, 2))/beta; cal = b3/beta; if (sal < 1.0e-6) goto decay2101; t1 = ctet + cal*stet*sfi/sal; t2 = stet/sal; q1 = xq*(b1*t1 + b2*t2*cfi)/beta; q2 = xq*(b2*t1 - b1*t2*cfi)/beta; q3 = xq*(b3*t1/beta - t2*sfi); goto decay2102; decay2101: q1 = xq * stet*cfi; q2 = xq * stet*sfi; q3 = xq * ctet; decay2102: hel = 0.0; w1 = q1*q1 + q2*q2 + q3*q3; wq = std::sqrt(w1 + x2*x2); p1 = -q1; p2 = -q2; p3 = -q3; wp = std::sqrt(w1+x1*x1); loren(&q1, &q2, &q3, &b1, &b2, &b3, &wq); loren(&p1, &p2, &p3, &b1, &b2, &b3, &wp); // Return calculated values: (*p1_p) = p1; (*p2_p) = p2; (*p3_p) = p3; (*q1_p) = q1; (*q2_p) = q2; (*q3_p) = q3; (*wp_p) = wp; (*wq_p) = wq; (*xi_p) = xi; (*x1_p) = x1; (*x2_p) = x2; (*hel_p) = hel; } void G4Incl::time(G4int i, G4int j) { // time G4double t[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; t[0] = bl1->p1[i]/bl1->eps[i] - bl1->p1[j]/bl1->eps[j]; // t(1)->t[0] t[1] = bl1->p2[i]/bl1->eps[i] - bl1->p2[j]/bl1->eps[j]; // t(2)->t[1] and so on ... t[2] = bl1->p3[i]/bl1->eps[i] - bl1->p3[j]/bl1->eps[j]; t[3] = bl3->x1[i] - bl3->x1[j]; t[4] = bl3->x2[i] - bl3->x2[j]; t[5] = bl3->x3[i] - bl3->x3[j]; t[6] = t[0]*t[3] + t[1]*t[4] + t[2]*t[5]; t[9] = t[0]*t[0] + t[1]*t[1] + t[2]*t[2]; if(t[9] <= 1.0e-10) { bl1->ta = 100000; } else { bl1->ta = -1.0*t[6]/t[9]; } bl3->rab2 = t[3]*t[3] + t[4]*t[4] + t[5]*t[5] + bl1->ta*t[6]; } void G4Incl::newt(G4int l1, G4int l2) { G4int ig = 0, id = 0, kg = 0, kd = 0; G4int iy = 0, ix = 0; G4double E = 0.0; G4int ia = bl3->ia1 + bl3->ia2; for(G4int i = 1; i <= ia; i++) { // do 52 i=1,ia if (bl5->nesc[i] != 0) { continue; } // if (i-l2) 53,52,54 if((i-l2) < 0) { goto newt53; } if((i-l2) == 0) { continue; } if((i-l2) > 0) { goto newt54; } newt53: ig=l2; id=i; kg=l1; kd=i; goto newt55; newt54: // if (i-l1) 56,52,57 if((i-l1) == 0) { continue; } if((i-l1) < 0) { goto newt56; } if((i-l1) > 0) { goto newt57; } newt56: kg=l1; kd=i; goto newt58; newt57: kg=i; kd=l1; newt58: ig=i; id=l2; newt55: // call time(ig,id) time(ig, id); if (bl1->ta < 0.0) { goto newt50; } if(bl1->ta > bl4->tmax5) { goto newt50; } if (bl1->ta < bl5->tlg[l2]) { // tlg(12)->tlg[11] goto newt50; } if ((bl1->ind1[ig]+bl1->ind1[id]) > 0) { goto newt60; } E=am(bl1->p1[ig]+bl1->p1[id],bl1->p2[ig]+bl1->p2[id],bl1->p3[ig]+bl1->p3[id],bl1->eps[ig]+bl1->eps[id]); if (E < 1925.0) { goto newt50; } iy=bl1->ind1[ig]+bl1->ind1[id]; if (iy != 1) { goto newt61; } ix=ig*(bl1->ind1[ig])+id*(bl1->ind1[id]); bl6->xx10=am(bl1->p1[ix],bl1->p2[ix],bl1->p3[ix],bl1->eps[ix]); bl6->isa=bl1->ind2[ix]; newt61: if ((31.*(bl3->rab2)) > totalCrossSection(E,iy,bl1->ind2[ig]+bl1->ind2[id])) { goto newt50; } newt60: // continue bl2->k=bl2->k+1; bl2->crois[bl2->k]=bl1->ta; bl2->ind[bl2->k]=ig; bl2->jnd[bl2->k]=id; newt50: time(kg,kd); if (bl1->ta < 0.) { continue; } if(bl1->ta > bl4->tmax5) { continue; } if (bl1->ta < bl5->tlg[10]) { //tlg(11)->tlg[10] continue; } if ((bl1->ind1[kg]+bl1->ind1[kd]) > 0) { goto newt62; } E=am(bl1->p1[kg]+bl1->p1[kd],bl1->p2[kg]+bl1->p2[kd],bl1->p3[kg]+bl1->p3[kd],bl1->eps[kg]+bl1->eps[kd]); if (E < 1925.) { continue; } iy=bl1->ind1[kg]+bl1->ind1[kd]; if (iy != 1) { goto newt63; } ix=kg*(bl1->ind1[kg])+kd*(bl1->ind1[kd]); bl6->xx10=am(bl1->p1[ix],bl1->p2[ix],bl1->p3[ix],bl1->eps[ix]); bl6->isa=bl1->ind2[ix]; newt63: if ((31.*(bl3->rab2)) > totalCrossSection(E,iy,bl1->ind2[kg]+bl1->ind2[kd])) { continue; } newt62: bl2->k=bl2->k+1; bl2->crois[bl2->k]=bl1->ta; bl2->ind[bl2->k]=kg; bl2->jnd[bl2->k]=kd; } } void G4Incl::new1(G4int l1) { G4int ia = 0, iy = 0, ix = 0; G4double E = 0.0; ia=bl3->ia1+bl3->ia2; for(G4int i = 1; i <= ia; i++) { if (bl5->nesc[i] != 0) { continue; } //if(i-l1) 53,52,54 if((i-l1) < 0) { goto new153; } if((i-l1) == 0) { continue; } if((i-l1) > 0) { goto new154; } new153: time(i, l1); if(bl1->ta < 0.0) { continue; } if(bl1->ta > bl4->tmax5) { continue; } if (bl1->ind1[i]+bl1->ind1[l1] > 0) { goto new160; } E=am(bl1->p1[i]+bl1->p1[l1],bl1->p2[i]+bl1->p2[l1],bl1->p3[i]+bl1->p3[l1],bl1->eps[i]+bl1->eps[l1]); if (E < 1925.0) { continue; } iy=bl1->ind1[i]+bl1->ind1[l1]; if (iy != 1) { goto new161; } ix=i*(bl1->ind1[i])+l1*(bl1->ind1[l1]); bl6->xx10=am(bl1->p1[ix],bl1->p2[ix],bl1->p3[ix],bl1->eps[ix]); bl6->isa=bl1->ind2[ix]; new161: if ((31.*(bl3->rab2)) > totalCrossSection(E ,iy,bl1->ind2[i]+bl1->ind2[l1])) { continue; } new160: //continue bl2->k=bl2->k+1; bl2->crois[bl2->k]=bl1->ta; bl2->ind[bl2->k]=l1; bl2->jnd[bl2->k]=i; continue; new154: time(i, l1); if(bl1->ta < 0.) { continue; } if(bl1->ta > bl4->tmax5) { continue; } if ((bl1->ind1[i]+bl1->ind1[l1]) > 0) { goto new170; } E=am(bl1->p1[i]+bl1->p1[l1],bl1->p2[i]+bl1->p2[l1],bl1->p3[i]+bl1->p3[l1],bl1->eps[i]+bl1->eps[l1]); if (E < 1925.0) { continue; } iy=bl1->ind1[i]+bl1->ind1[l1]; if (iy != 1) { goto new171; } ix=i*(bl1->ind1[i])+l1*(bl1->ind1[l1]); bl6->xx10=am(bl1->p1[ix],bl1->p2[ix],bl1->p3[ix],bl1->eps[ix]); bl6->isa=bl1->ind2[ix]; new171: if ((31.0*(bl3->rab2)) > totalCrossSection(E,iy,bl1->ind2[i]+bl1->ind2[l1])) { continue; } new170: bl2->k=bl2->k+1; bl2->crois[bl2->k]=bl1->ta; bl2->ind[bl2->k]=i; bl2->jnd[bl2->k]=l1; } // std::ofstream newout("new1Dump.out"); // dumpBl2(newout); // dumpBl5(newout); // newout.close(); // exit(0); } void G4Incl::new2(G4double y1, G4double y2, G4double y3, G4double q1, G4double q2, G4double q3, G4double q4, G4int npion, G4int l1) { G4double t[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; G4int ia = bl3->ia1 + bl3->ia2; for(G4int i = 1; i <= ia; i++) { if (bl5->nesc[i] != 0) { continue; } if(i == l1) { continue; } if(bl1->ind1[i] == 1) { continue; } t[0] = bl1->p1[i]/bl1->eps[i] - q1/q4; t[1] = bl1->p2[i]/bl1->eps[i] - q2/q4; t[2] = bl1->p3[i]/bl1->eps[i] - q3/q4; t[3] = bl3->x1[i] - y1; t[4] = bl3->x2[i] - y2; t[5] = bl3->x3[i] - y3; t[6] = t[0]*t[3] + t[1]*t[4] + t[2]*t[5]; if(t[6] > 0.0) { continue; } t[9] = t[0]*t[0] + t[1]*t[1] + t[2]*t[2]; bl1->ta = -1 * t[6]/t[9]; if(bl1->ta > bl4->tmax5) { continue; } G4double xx2 = t[3]*t[3] + t[4]*t[4] + t[5]*t[5] + (bl1->ta)*t[6]; G4double E = std::sqrt(std::pow((bl1->eps[i]+q4),2) - std::pow((bl1->p1[i]+q1),2) - std::pow((bl1->p2[i]+q2),2) - std::pow((bl1->p3[i]+q3),2)); if ((31.0*xx2) > pionNucleonCrossSection(E)) { continue; } bl2->k=bl2->k+1; bl2->crois[bl2->k]=bl1->ta; bl2->ind[bl2->k]=ia+npion; bl2->jnd[bl2->k]=i; } } void G4Incl::new3(G4double y1, G4double y2, G4double y3, G4double q1, G4double q2, G4double q3, G4double q4, G4int npion, G4int l1) { G4double t[10] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; G4double E = 0.0, xx2 = 0.0; G4int ia = 0; if(bl5->nesc[l1] > 0) { return; } t[0] = bl1->p1[l1]/bl1->eps[l1] - q1/q4; t[1] = bl1->p2[l1]/bl1->eps[l1] - q2/q4; t[2] = bl1->p3[l1]/bl1->eps[l1] - q3/q4; t[3] = bl3->x1[l1] - y1; t[4] = bl3->x2[l1] - y2; t[5] = bl3->x3[l1] - y3; t[6] = t[0]*t[3] + t[1]*t[4] + t[2]*t[5]; if(t[6] > 0.0) { return; } t[9] = t[0]*t[0] + t[1]*t[1] + t[2]*t[2]; bl1->ta = -1 * t[6]/t[9]; if(bl1->ta > bl4->tmax5) { return; } if (bl1->ta < bl5->tlg[l1]) { return; } xx2 = t[3]*t[3] + t[4]*t[4] + t[5]*t[5] + (bl1->ta)*t[6]; E = std::sqrt(std::pow((bl1->eps[l1]+q4),2) - std::pow((bl1->p1[l1]+q1),2) - std::pow((bl1->p2[l1]+q2),2) - std::pow((bl1->p3[l1]+q3),2)); if ((31.0*xx2) > pionNucleonCrossSection(E)) { return; } bl2->k = bl2->k + 1; bl2->crois[bl2->k] = bl1->ta; ia = bl3->ia1+bl3->ia2; bl2->ind[bl2->k] = ia + npion; bl2->jnd[bl2->k] = l1; } void G4Incl::loren(G4double *q1, G4double *q2, G4double *q3, G4double *b1, G4double *b2, G4double *b3, G4double *E) { // Transforms momentum q and energy E from a frame moving with // velocity beta G4double bb2 = (*b1) * (*b1) + (*b2) * (*b2) + (*b3) * (*b3); G4double bq = (*b1) * (*q1) + (*b2) * (*q2) + (*b3) * (*q3); G4double gam2 = 1.0/(1.0 - bb2); G4double gam = std::sqrt(gam2); G4double c = gam2/(gam + 1.0); G4double g = c * bq + gam*(*E); (*E) = gam * ((*E) + bq); (*q1) = (*q1) + (*b1) * g; (*q2) = (*q2) + (*b2) * g; (*q3) = (*q3) + (*b3) * g; } G4double G4Incl::pauliBlocking(G4int l, G4double xr, G4double pr) { // G4int l = (*l_p); // G4double xr = (*xr_p); // G4double pr = (*pr_p); // G4double f = (*f_p); // This subroutine calculates the occupation in phase space around // nucleon l , by counting the particles in a volume around l the // volume is the product of a sphere of radius xr in r-space by a // sphere of radius pr in momentum space average is taken on the spin // only // 3756 common/bl1/p1(300),p2(300),p3(300),eps(300),ind1(300),ind2(300),tap-n24950 // 3757 common/bl3/r1,r2,x1(300),x2(300),x3(300),ia1,ia2,rab2 p-n24960 // 3758 common/bl5/tlg(300),nesc(300) p-n24970 // 3759 common/saxw/ xx(30,500),yy(30,500),ss(30,500),nbpG4inter,imat // 3760 common/ws/r0,adif,rmaxws,drws,nosurf,xfoisa,npaulstr,bmax G4double pmod = 0.0, pr2 = 0.0; G4double xr2 = 0.0, rdeq = 0.0, dx2 = 0.0, dp2 = 0.0; G4double rs = 0.0, vol = 0.0; G4int nl = 0; G4int ia = 0; if (ws->npaulstr == 2) { return 0.0; } if (ws->npaulstr == 1) { // pauli strict pmod = std::sqrt(std::pow(bl1->p1[l],2) + std::pow(bl1->p2[l],2) + std::pow(bl1->p3[l],2)); if (pmod < fermi->pf) { return 1.0; } else { return 0.0; } } else { // Statistic Pauli blocking xr2 = xr*xr; pr2 = pr*pr; vol = std::pow((40.0*3.1415926/3.0),2) * (std::pow((xr*pr)/(2.0*3.1415926*197.33),3)); rs = std::sqrt(bl3->x1[l]*bl3->x1[l] + bl3->x2[l]*bl3->x2[l] + bl3->x3[l]*bl3->x3[l]); if (ws->nosurf <= 0) { // modifs a.b.: r2 -> rmaxws pour la densite en w.s. rdeq = ws->rmaxws; } else { rdeq = ws->r0; } if ((rs - xr) <= rdeq) { if ((rs + xr) > rdeq) { vol = vol*0.5*(rdeq-rs+xr)/xr; } ia = bl3->ia1 + bl3->ia2; nl = 0; for(G4int i = 1; i <= ia; i++) { dx2 = std::pow((bl3->x1[l]-bl3->x1[i]),2) + std::pow((bl3->x2[l]-bl3->x2[i]),2) + std::pow((bl3->x3[l]-bl3->x3[i]),2); dp2 = std::pow((bl1->p1[l]-bl1->p1[i]),2) + std::pow((bl1->p2[l]-bl1->p2[i]),2) + std::pow((bl1->p3[l]-bl1->p3[i]),2); if((bl5->nesc[i] > 0) || (bl1->ind1[i] > 0) || (bl1->ind2[i] != bl1->ind2[l]) || (dx2 > xr2) || (dp2 > pr2)) { if(((nl - 1)/vol/2.0) > 1.0) { return 1.0; } else { return ((nl - 1)/vol/2.0); } } nl = nl + 1; } } else { return 0.0; } } return 0.0; // The algorithm is not supposed to reach this point. } G4double G4Incl::lowEnergy(G4double E, G4double m, G4double i) { // fit by j.vandermeulen // low enrgy fit of j.c., d. l'hote, j. vdm, nim b111(1996)215 // i = 2,0,-2 for pp,pn,nn // m = 0,1,2 for nucleon-nucleon,nucleon-delta,delta,delta G4double scale = 1.0; G4double plab = E*std::sqrt(E*E-3.52e6)/1876.6; G4double p1 = 0.001*plab; G4double alp = 0.0; if(plab > 2000.0) { // goto sel13; // sel13: return ((77.0/(p1 + 1.5))*scale); } if((m-1) < 0) { if (i == 0) { if (plab < 800.0) { if (plab < 450.0) { alp = std::log(p1); return(6.3555*std::exp(-3.2481*alp - 0.377*alp*alp)); } else { return((33.0 + 196.0*std::sqrt(std::fabs(std::pow((p1 - 0.95),5))))*scale); } } else { return(31.0/std::sqrt(p1)*scale); } } } if (plab < 800.0) { if (plab < 440.0) { return(34.0*std::pow((p1/0.4),(-2.104))); } else { return((23.5 + 1000.*std::pow((p1 - 0.7),4))*scale); } } else if(plab > 2000.0) { return ((77.0/(p1 + 1.5))*scale); } else { return((1250.0/(50.0 + p1) - 4.0*std::pow((p1 - 1.3),2))*scale); } } G4double G4Incl::totalCrossSection(G4double E, G4int m, G4int i) { // total cross-sections // i=2,0,-2 for pp,pn,nn // m=0,1,2 for nucleon-nucleon,nucleon-delta,delta,delta G4double stotResult = 0.0; G4double sine = 0.0; if((m-1) < 0) { // Nucleon - Nucleon sine = deltaProductionCrossSection(E,int(i)); } if((m-1) == 0) { // Nucleon - Delta sine = srec(E,(bl6->xx10),i,int(bl6->isa)); } if((m-1) > 0) { // Delta - Delta sine = 0.0; } stotResult = sine + lowEnergy(E,m,i); #ifdef G4INCLDEBUG theLogger->fillHistogram1D("totalCXResult", stotResult); theLogger->fillHistogram1D("totalLowECX", lowEnergy(E, m, i)); if(m == 0) { // Nucleon - Nucleon if(i == 2) { // pp theLogger->fillHistogram2D("ppCX", E, stotResult); } else if(i == 0) { // pn theLogger->fillHistogram2D("pnCX", E, stotResult); } else if(i == -2) { // nn theLogger->fillHistogram2D("nnCX", E, stotResult); } } else if(m == 1) { // Nucleon - Delta theLogger->fillHistogram2D("NDCX", E, stotResult); } else if(m == 2) { // Delta - Delta theLogger->fillHistogram2D("DDCX", E, stotResult); } #endif return stotResult; } G4double G4Incl::srec(G4double Ein, G4double d, G4int i, G4int isa) { G4double E = Ein; G4double s = 0.0; G4double x = 0.0, y = 0.0; G4double srecResult = 0.0; if (i*i == 16) { return 0.0; } if(E <= (938.3 + d)) { return 0.0; } else { if(E < (938.3 + d + 2.0)) { E = 938.3 + d + 2.0; } s = E*E; x = (s - 3.523e6)/(s - std::pow((938.3 + d),2)); y = s/(s - std::pow((d - 938.3),2)); srecResult = 0.5*x*y*deltaProductionCrossSection(E, i); srecResult = srecResult*(32.0 + i*i*(isa*isa - 5))/64.0; srecResult = srecResult/(1.0 + 0.25*i*i); srecResult = 3.0*srecResult; //pi absorption increased also for internal pions (7/3/01) return srecResult; } } G4double G4Incl::deltaProductionCrossSection(G4double E, G4int i) { // delta production cross-sections // fit by j.vandermeulen // i = 2,0,-2 for pp,pn,nn // G4double scali = 1.0; // G4double plab; // G4double p1; // G4double sproResult; // G4double EE = E - bl8->rathr; // if(EE*EE-3.53e6 < 0) { // return 0.0; // } // else { // plab = EE*std::sqrt(EE*EE-3.52e6)/1876.6; // p1 = 0.001*plab; // if (plab > 800.0) { // //goto spro1; // // spro1: // if (i*i == 4) { // // goto spro10; // //spro10: // if (plab < 2000.0) { // // goto spro11; // // spro11: // if (plab < 1500.0) { // // goto spro12; // // spro12: // sproResult = 23.5 + 24.6/(1.0 + std::exp(-10.0*p1 + 12.0)) - 1250.0/(p1+50.0)+4.0*std::pow((p1-1.3),2); // return (sproResult*scali); // } // else { // sproResult = 41.0 + 60.0*(p1 - 0.9)*std::exp(-1.2*p1) - 1250.0/(p1+50.0) + 4.*std::pow((p1 - 1.3),2); // return (sproResult*scali); // } // } // else { // return ((41.0 + (60.0*p1 - 54.0)*std::exp(-1.2*p1) - 77.0/(p1 + 1.5))*scali); // } // } // else { // if (plab < 2000.0) { // //goto spro2; // // spro2: // if (plab < 1000.0) { // //goto spro3; // // spro3: // return ((33.0 + 196.0*std::sqrt(std::pow(std::fabs(p1 - 0.95),5)) - 31.1/std::sqrt(p1))*scali); // } // else { // return ((24.2 + 8.9*p1 - 31.1/std::sqrt(p1))*scali); // } // } // else { // return ((42.-77./(p1+1.5))*scali); // } // } // } // // plab <= 800.0 // else { // return 0.0; // } // } double scali=1.0; double plab = 0.0; double p1 = 0.0; double sproResult = 0.0; double EE = E -(bl8->rathr); if(EE*EE-3.53e6 < 0) { goto spro22; } plab = EE * std::sqrt(EE*EE - 3.52e6)/1876.6; p1 = 0.001*plab; if (plab > 800.) { goto spro1; } spro22: sproResult = 0.0; return sproResult; spro1: if (i*i == 4) { goto spro10; } if (plab < 2000.) { goto spro2; } sproResult=(42.-77./(p1+1.5))*scali; return sproResult; spro2: if (plab < 1000.) { goto spro3; } sproResult=(24.2+8.9*p1-31.1/std::sqrt(p1))*scali; return sproResult; spro3: sproResult = (33.0 + 196.0*std::sqrt(std::pow(std::fabs(p1 - 0.95),5)) - 31.1/std::sqrt(p1))*scali; return sproResult; spro10: if (plab < 2000.) { goto spro11; } sproResult = (41.0 + (60.0*p1 - 54.0)*std::exp(-1.2*p1) - 77.0/(p1 + 1.5))*scali; return sproResult; spro11: if (plab < 1500.) { goto spro12; } sproResult = 41.0 + 60.0*(p1 - 0.9)*std::exp(-1.2*p1) - 1250.0/(p1 + 50.0)+4.0*std::pow((p1-1.3),2); sproResult = sproResult*scali; return sproResult; spro12: sproResult=23.5 + 24.6/(1.0 + std::exp(-10.0*p1 + 12.0)) - 1250.0/(p1 + 50.0) + 4.0*std::pow((p1 - 1.3),2); sproResult=sproResult*scali; return sproResult; } G4double G4Incl::pionNucleonCrossSection(G4double x) { // sigma(pi+ + p) in the (3,3) region // new fit by j.vandermeulen + constant value above the (3,3) // resonance G4double y = x*x; G4double q2 = (y-std::pow(1076.0,2))*(y-std::pow(800.0,2))/y/4.0; G4double q3 = 0.0, f3 = 0.0; G4double spn = 0.0; if(q2 <= 0) { return 0.0; } else { q3 = std::pow((std::sqrt(q2)),3); f3 = q3/(q3+std::pow(180.0,3)); spn = 326.5/(std::pow(((x - 1215.0 - bl8->ramass)*2.0/110.0),2)+1.0); spn = spn*(1.0 - 5.0 * (bl8->ramass/1215.0)); return (spn*f3); } } // FUNCTION BARR(E,IZ,IA,IZN,R,V0) // tp = transmissionProb(bl1->eps[bl9->l1]-fm,bl1->ind2[bl9->l1],1,itch,bl3->r2,v0); G4double G4Incl::transmissionProb(G4double E, G4int iz, G4int ia, G4int izn,G4double R, G4double v0) { // C // C // C NOUVEAU BARR RELATIVISTE ATTENTION AUX ENTREES SORTIES! // C (06/2005) // C P-N24450 // CCC BARR=TRANSMISSION PROBABILITY FOR A PARTICLE (Nucleon, cluster or // CCC pion) of kinetic energy E on the edge of the (attractive) well of // CCC depth V0 felt by the particle. // CCC IZ is the isospin of the particle, // CCC IZN the instantaneous charge of the nucleus and R the radius of // CCC the well. // CCC IA is the mass number of the particle, and MRE its mass energy. // C P-N24500 // C Modified 9/10/2002 for clusters (d,t,3He,4He) (IZ=isospin,IA=A) // C IZ must be correct so that charge Q=(IA+IZ)/2. // C Modified 4/2004 for relativistic expressions and pions. G4double mre; G4double barr = 0.0; G4double v0ia = v0*ia; mre = ia*938.3; if (E > v0ia && izn > 0 && R != 0) goto tp1; barr = 0.0; return barr; tp1: G4double x=std::sqrt((2.*mre*E+E*E)*(2.*mre*(E-v0ia)+std::pow((E-v0ia),2))); barr=4.*x/(2.*mre*(2.*E-v0ia)+std::pow(E,2)+std::pow(E-v0ia,2)+2.*x); G4double iq=(ia+iz)/2.; if (iq > 0 && E > v0ia) goto tp2; return barr; tp2: G4double b=iq*izn*1.44/R; G4double px=std::sqrt((E-v0ia)/b); if (px < 1.) goto tp3; return barr; tp3: G4double g=iq*izn/137.03*std::sqrt(2.*mre/(E-v0ia)/(1.+(E-v0ia)/2./mre)) *(std::acos(px)-px*std::sqrt(1.-px*px)); if (g > 35.) { barr=0.0; } else { barr=barr*std::exp(-2.*g); } // endif return barr; } G4double G4Incl::ref(G4double &x1, G4double &x2, G4double &x3, G4double p1, G4double p2, G4double p3, G4double E, G4double r2) { // Surface : modif de REF // REF=TIME NECESSARY FOR A NUCLEON TO REACH THE SURFACE const G4double pf = 270.33936, pf2 = 73083.4; G4double ref = 0.0; G4double t2 = p1*p1 +p2*p2 + p3*p3; G4double p = std::sqrt(t2); G4double r = r2; G4double xv = 0.0; G4double s_l = 0.0; G4double t1 = 0.0, t3 = 0.0, t4 = 0.0, t5 = 0.0; if (ws->nosurf <= 0) { // modif pour w.s.: xv = p/pf; if(t2 <= pf2) { r = interpolateFunction(xv); #ifdef G4INCLDEBUG theLogger->fillHistogram1D("refInterpolXV", xv); theLogger->fillHistogram1D("refInterpolRes", r); if(xv > 1.0) theLogger->fillHistogram1D("refInterpolResWhenXVgt1", r); #endif } else { r = ws->rmaxws; } r = r*r; } /* if (ws->nosurf <= 0) { // modif pour w.s.: xv=p/pf; r=interpolateFunction(xv); r=r*r; if (t2 > pf2) r=std::pow(ws->rmaxws,2); } //endif */ ref21: t4 = x1*x1 + x2*x2 + x3*x3; if (t4 > r) goto ref2; t1 = x1*p1 + x2*p2 + x3*p3; t3 = t1/t2; t5 = t3*t3 + (r-t4)/t2; if (t5 > 0) goto ref1; ref = 10000.0; return ref; ref1: ref = (-t3 + std::sqrt(t5))*E; return ref; ref2: s_l = std::sqrt(r*0.99/t4); x1 = x1*s_l; x2 = x2*s_l; x3 = x3*s_l; goto ref21; return 0.0; } // void G4Incl::forceAbsor(G4int nopart, G4double iarem, G4double izrem, G4double esrem, G4double erecrem, // G4double alrem, G4double berem, G4double garem, G4double jrem) void G4Incl::forceAbsor(G4int *nopart, G4int *iarem, G4int *izrem, G4double *esrem, G4double *erecrem, G4double *alrem, G4double *berem, G4double *garem, G4int *jrem) { // 4341 C------------------------------------------------------------------------------ // 4342 SUBROUTINE FORCE_ABSOR(nopart,F,IAREM,IZREM,ESREM,ERECREM, // 4343 s ALREM,BEREM,GAREM,JREM) // 4346 DIMENSION F(15) // 4347 REAL*4 ia1,iz1 // 4348 // 4349 COMMON/hazard/ial,IY(19) // 4350 C Dialogue with INCL for nucleus density and parameters. // 4351 COMMON/WS/R0,ADIF,RMAXWS,DRWS,NOSURF,XFOISA,NPAULSTR,BMAX // 4352 C RMS espace R, espace P, Fermi momentum and energy for light gauss nuc. // 4353 COMMON/light_gaus_nuc/rms1t(9),pf1t(9),pfln(9),tfln(9),vnuc(9) G4int itg = 0; G4double sep = 0.0; G4double iz1 = 0.0; G4double del = 0.0; G4double bmaxt = 0.0; G4double proba, proba_trans; G4double alea; if((*nopart) != -1) { return; } // bl3->ia2 = int(std::floor(calincl->targetA() + 0.1)); // f(1) -> f[0] bl3->ia2 = calincl->targetA(); sep = 6.8309; if(bl3->ia2 <= 4) { if(bl3->ia2 == 2) { itg = 6 - 1; } if(bl3->ia2 == 3 && calincl->targetZ() == 1) { itg = 7 - 1; } if(bl3->ia2 == 3 && calincl->targetZ() == 2) { itg = 8 - 1; } if(bl3->ia2 == 4) { itg = 9 - 1; } sep = light_gaus_nuc->vnuc[itg] - light_gaus_nuc->tfln[itg]; // :::BUG::: Off-by-one!!! } if((calincl->bulletE() >= 10.0) && (calincl->bulletE() <= 100.0)) { if(calincl->bulletType() == 1) { bl3->ia1 = int(1.0); iz1 = 1.0; G4double fmpinc = 938.2796; G4double pbeam2 = calincl->bulletE()*(calincl->bulletE() + 2.0*fmpinc); bmaxt = ws->bmax; proba_trans = coulombTransm(calincl->bulletE(),bl3->ia1,iz1,calincl->targetA(),calincl->targetZ()); proba = forceAbs(1,calincl->targetA(),calincl->targetZ(),calincl->bulletE(),bmaxt,proba_trans); standardRandom(&alea,&(hazard->igraine[4])); if(alea > proba) { return; } (*iarem) = int(calincl->targetA()) + bl3->ia1; (*izrem) = int(calincl->targetZ()) + int(iz1); del = std::sqrt(std::pow(((calincl->targetA() + 1.0)*fmpinc + calincl->bulletE()),2) - pbeam2); (*erecrem) = pbeam2/((calincl->targetA() + 1.0)*fmpinc+calincl->bulletE() + del); (*esrem) = calincl->bulletE() + sep - (*erecrem); (*alrem) = 0.00001; (*berem) = 0.0; (*garem) = 0.99999; (*jrem) = 0; (*nopart) = 0; return; } else if((calincl->bulletType() == 2) && (calincl->bulletE() >= 20.0)) { bl3->ia1 = int(1.0); iz1 = 0.0; G4double fmpinc = 938.2796; G4double pbeam2 = calincl->bulletE()*(calincl->bulletE() + 2.0*fmpinc); bmaxt = ws->bmax; proba_trans = coulombTransm(calincl->bulletE(),bl3->ia1,iz1,calincl->targetA(),calincl->targetZ()); proba = forceAbs(1,calincl->targetA(),calincl->targetZ(),calincl->bulletE(),bmaxt,proba_trans); standardRandom(&alea,&(hazard->igraine[4])); if(alea > proba) { return; } (*iarem) = int(calincl->targetA()) + bl3->ia1; (*izrem) = int(calincl->targetZ()) + int(iz1); del = std::sqrt(std::pow(((calincl->targetA()+1.)*fmpinc+calincl->bulletE()),2)-pbeam2); (*erecrem) = pbeam2/((calincl->targetA() + 1.0)*fmpinc + calincl->bulletE() + del); (*esrem) = calincl->bulletE() + sep - (*erecrem); (*alrem) = 0.00001; (*berem) = 0.0; (*garem) = 0.99999; (*jrem) = 0; (*nopart) = 0; return; } } // end if } G4double G4Incl::forceAbs(G4double iprojo, G4double at, G4double zt, G4double ep, G4double bmax, G4double pt) { // Results of xabs2 and sig_reac G4double sig_exp, sig_incl; G4double proba; G4double ap,zp,A,Z,E; A=at; Z=zt; E=ep; double sig_g = 31.41592654*bmax*bmax; if(iprojo == 1) { ap = 1.0; zp = 1.0; } else { ap=1.0; zp=0.0; } sig_exp = xabs2(zp, ap, zt, at, ep); sig_incl = crossSection(int(iprojo), ep, at); proba = (sig_exp-pt*sig_incl)/(pt*(sig_g - sig_incl)); if(proba <= 0.0) { proba = 0.0; } if(proba > 1.0) { proba = 1.0; } return proba; } G4double G4Incl::xabs2(G4double zp, G4double ap, G4double zt, G4double at, G4double ep) { G4double sig = 0.0; G4double Const, xzt, xat, Const1 = 0.0, t1, gcm, bcm, plab, ecmp, ecmt, rela, ecm, rm, bigr, bigb; G4double xm, x1, sl, phst, ce, term1, delta, beta, twxsec; G4double xsec; const G4double dp0 = 0.e0, dp1 = 1.e0, dp2 = 2.e0, dp3 = 3.e0, dph = 0.5e0; const G4double dp10 = 1.e1, dpth = dp1/dp3, dppi = 3.1415926535898; // absoprption xsec revised version rkt-97/5 neutron data from // barashenkov this gives absorption xsec for given zp,ap,zt,at,e // (mev/nucleon) arguement changed to mev; then e=ep/ap mev/nucleon // can be used for neutrons also. this has coulomb as ours G4double E = ep/ap; // nucleon-nucleon inelastc xsec not included here if ((nint(ap*at) == 1) || (nint(zp+zt) == 1)) { return dp0; } G4double rp = radius(G4int(ap)); G4double rt = radius(G4int(at)); G4double vp = (dp1 + dpth)*dppi*std::pow(rp,3); G4double vt = (dp1 + dpth)*dppi*std::pow(rt,3); G4double density = dph*((ap/vp) + (at/vt)); Const=1.75e0*density/8.824728e-02; if ((zt < zp) || ((zt == zp) && (at < ap))) { xzt = zp; xat = ap; zp = zt; ap = at; zt = xzt; at = xat; } if (nint(ap) == 1) { Const=2.05; } if ((nint(zp) == 2) && (nint(ap) == 4)) { Const1 = 2.77 - at*8.0e-03 + (at*at)*1.8e-05; } if (nint(zp) == 3) { Const=Const/3.0; } t1=40.0; if (nint(zp) == 0) { if ((nint(at) >= 11) && (nint(at) < 40)) { t1=30.0; } if (nint(zt) == 14) { t1=35.0; } if (nint(zt) == 26) { t1=30.0; } } gcm = (ap*(dp1 + E/938.0) + at)/(std::pow((std::pow(ap,2) + std::pow(at,2) + dp2*ap*(E + 938.0)*at/938.e0),dph)); bcm = std::sqrt(dp1-dp1/(std::pow(gcm,2))); plab = ap*std::sqrt(dp2*938.0*E + E*E); ecmp = gcm*(E+938.0)*ap - bcm*gcm*plab - ap*938.0; ecmt = gcm*938.0*at - at*938.0; rela = ecmp + ecmt; ecm = rela; if (ecm < (0.1*rela)) { ecm = 0.1*rela; } rm = (197.32/137.01)*zp*zt/ecm; bigr = rp + rt + 1.2*(std::pow(ap,dpth) + std::pow(at,dpth))/(std::pow(ecm,dpth)); bigb = 1.44*zp*zt/bigr; if ((nint(zp) == 1) && (nint(at) > 56)) { bigb = 0.90*bigb; } if ((nint(ap) > 56) && (nint(zt) == 1)) { bigb = 0.90*bigb; } if ((nint(ap) == 1) && (nint(at) == 12)) { bigb = 3.5*bigb; } if (nint(ap) == 1) { if ((nint(at) <= 16) && (nint(at) >= 13)) { bigb = (at/7.)*bigb; } if (nint(zt) == 12) { bigb = 1.8*bigb; } if (nint(zt) == 14) { bigb = 1.4*bigb; } if (nint(zt) == 20) { bigb = 1.3*bigb; } } if ((nint(ap) == 1) && (nint(at) < 4)) { bigb = 21.0*bigb; } if ((nint(ap) < 4) && (nint(at) == 1)) { bigb = 21.0*bigb; } if ((nint(ap) == 1) && (nint(at) == 4)) { bigb = 27.0*bigb; } if ((nint(ap) == 4) && (nint(at) == 1)) { bigb = 27.0*bigb; } if ((nint(zp) == 0) || (nint(zt) == 0)) { bigb = dp0; } xsec = dp10*dppi*bigr*bigr*(dp1-bigb/ecm); xm=1.0; if (nint(zp) == 0) { if (nint(at) < 200) { x1 = 2.83 - 3.1e-02*at + 1.7e-04*at*at; if (x1 <= 1) { x1=1.0; } sl=dp1; if (nint(at) == 12) { sl=1.6; } if (nint(at) < 12) { sl=0.6; } xm = (1 - x1*std::exp(-E/(sl*x1))); if (E < 20) { // cout <<"e,xm= " << e << " " << xm << endl; } } else { xm = (1-0.3*std::exp(-(E-1)/15))*(1 - std::exp(-(E-0.9))); } } if ((nint(zp) == 2) && (nint(ap) == 4)) { Const = Const1 - 0.8/(1 + std::exp((250.0-E)/75.0)); } if ((nint(zp) == 1) && (nint(ap) == 1)) { if (nint(at) > 45) { t1 = 40.0 + at/dp3; } if (nint(at) < 4) { t1 = 55; } Const = 2.05 - 0.05/(1 + std::exp((250.0-E)/75.0)); if (nint(at) < 4) { Const = 1.7; } if (nint(zt) == 12) { t1=40.0; Const=2.05 - dp3/(1.0 + safeExp((E - 20.0)/dp10)); } if (nint(zt) == 14) { t1 = 40.0; Const = 2.05 - 1.75/(1.0 + safeExp((E - 20.0)/dp10)); } if (nint(zt) == 18) { t1 = 40.0; Const = 2.05 - dp2/(1.0 + safeExp((E - 20.0)/dp10)); } if (nint(zt) == 20) { t1 = 40.0; Const = 2.05 - dp1/(1.0 + safeExp((E - 40.0)/dp10)); Const = Const - 0.25/(1 + std::exp((250.0 - E)/75.0)); } if (nint(zt) >= 35) { phst = (nint(zt)-35.e0)/260.e0; Const = Const - phst/(1 + std::exp((250.0 - E)/75.0)); } } if ((nint(zp) == 0) && (nint(ap) == 1)) { Const = 2*(0.134457/density); if ((nint(at) > 140) && (nint(at) <200)) { Const = Const - 1.5*(at - dp2*zt)/at; } if (nint(at) < 60) { Const = Const - 1.5*(at - dp2*zt)/at; } if (nint(at) <= 40) { Const = Const + 0.25/(dp1 + safeExp(-(170.0 - E)/100.0)); } if (nint(zt) > 82) { Const = Const - zt/(at - zt); } if (nint(zt) >= 82) { Const = Const - dp2/(1.0 + safeExp((E - 20.0)/20.0)); } if ((nint(zt) <= 20) && (nint(zt) >= 10)) { Const = Const - dp1/(dp1 + safeExp((E - 20.0)/dp10)); } } ce = Const * (1.0 - std::exp(-E/t1)) - 0.292*std::exp(-E / 792) * std::cos(0.229*std::pow(E,0.453)); term1 = std::pow((at*ap),dpth)/(std::pow(at,dpth) + std::pow(ap,dpth)); delta = 1.615*term1 - 0.873*ce; delta = delta + 0.140*term1/(std::pow(ecm,dpth)); delta = delta + 0.794*(at - dp2*zt)*zp/(at*ap); delta = -delta; beta = 1.0; twxsec = dp10*dppi*1.26e0*1.26e0*beta*std::pow((0.873e0*std::pow(ap,dpth) + 0.873e0*std::pow(at,dpth)-delta),2); sig = twxsec*(dp1-bigb/ecm)*xm; if (sig < dp0) { sig = dp0; } return sig; } void G4Incl::standardRandom(G4double *rndm, G4long*) { // Use Geant4 G4UniformRand // (*rndm) = G4UniformRand(); (*rndm) = randomGenerator->getRandom(); } void G4Incl::gaussianRandom(G4double *rndm) { // Gaussian random number generator G4double xg, xxg, xshuf; gaussianRandom1: xg=0.; for(G4int i = 1; i <= 12; i++) { //do 6 j=1,12 standardRandom(&xxg,&(hazard->ial)); // gaussianRandom6: xg=xg+xxg; } xg=xg-6.; if (xg*xg > 9.0) goto gaussianRandom1; standardRandom(&xshuf,&(hazard->igraine[10])); if (xshuf > 0.5) standardRandom(&xxg,&(hazard->ial)); // gaussianRandom2: (*rndm) = xg; return; /* G4double tempRandom = 0.0, random = 0.0, randomShuffle = 0.0; do { random = 0.0; for(G4int i = 0; i < 12; i++) { standardRandom(&tempRandom, &(hazard->ial)); random = random + tempRandom; } random = random - 6.0; } while(random*random > 9); // Shuffle the random seeds standardRandom(&randomShuffle, &(hazard->igraine[10])); if(randomShuffle > 0.5) { standardRandom(&tempRandom, &(hazard->ial)); } (*rndm) = random; */ } G4double G4Incl::safeExp(G4double x) { if (x < -80.0) { x = -80.0; } if (x > 80.0) { x = 80.0; } return std::exp(x); } G4double G4Incl::radius(G4int A) { const G4double dp1 = 1.0, dp3 = 3.0; const G4double dp5 = 5.0, dpth = dp1/dp3; const G4int naSize = 23; const G4int rmsSize = naSize; const G4int na[naSize] = {1,2,3,4,6,7,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26}; const G4double rms[rmsSize] = {0.85,2.095,1.976,1.671,2.57,2.41,2.519,2.45, 2.42,2.471,2.440,2.58,2.611,2.730,2.662,2.727, 2.900,3.040,2.969,2.94,3.075,3.11,3.06}; G4double fact = std::sqrt(dp5/dp3); // G4int ia = int(std::floor(A+0.4)); G4int ia = A; G4double result = fact * (0.84 * std::pow(A,dpth) + 0.55); for(G4int i = 0; i < naSize; i++) { if (ia == na[i]) { result = fact*rms[i]; } } return result; } G4double G4Incl::crossSection(G4int projectile, G4double E, G4double A) { const G4double coefp[4][3] = {{ -5.9260e-9, 6.89450e-6, -6.0980e-6}, { 2.1544e-6,-1.84800e-3, -5.9820e-4}, { -2.5900e-4, 0.17595e+0, 1.1741e+0}, { 1.1504e-3, 2.82810e+0,-28.7300e+0}}; const G4double coefn[4][3] = {{1.6105e-9,3.3985e-7,1.4678e-5}, {-5.35e-7,-3.465e-4,-0.01633e+0}, {-4.755e-6,0.07608e+0,2.8135e+0}, {-3.622e-3,3.5924e+0,-38.294e+0}}; const G4double coef2p[5][3] = {{6.8108e-9,-2.163e-7,2.1898e-6}, {-2.187e-6,7.8331e-5,-7.164e-4}, {2.3651e-4,-9.690e-3,0.076424e+0}, {-9.195e-3,0.5030e+0,-2.4979e+0}, {-0.01087e+0,2.6494e+0,-2.5173e+0}}; G4double apow[3] = {0.0, 0.0, 0.0}, epow[5] = {0.0, 0.0, 0.0}; G4int ii = 0, jj = 0; if(A >= 27.0) { ii = 3; jj = 4; } else { ii = 3; jj = 5; } for(int i = 1; i <= ii; i++) { apow[i-1] = std::pow(A,(ii-i)); } for(int j = 1; j <= jj; j++) { epow[j-1] = std::pow(E,(jj-j)); } double result = 0.0; if(A >= 27.0) { if(projectile == 1) { for(G4int i = 0; i < ii; i++) { for(G4int j = 0; j < jj; j++) { result = result + coefp[j][i]*apow[i]*epow[j]; } } } else { for(G4int i = 0; i < ii; i++ ) { for(G4int j = 0; j < jj; j++) { result = result + coefn[j][i]*apow[i]*epow[j]; } } } } else { for(G4int i = 0; i < ii; i++) { for(G4int j = 0; j < jj; j++) { result = result + coef2p[j][i]*apow[i]*epow[j]; } } } return result; } G4double G4Incl::coulombTransm(G4double E, G4double fm1, G4double z1, G4double fm2, G4double z2) { G4double eta = 0.0, rho = 0.0; const G4double c2 = 0.00516; const G4double c3 = 0.007165; const G4double uma = 938.0; G4double ml = 0.0; G4double ecm = E*fm2/(fm1+fm2); G4double fm = fm1*fm2*uma/(fm1+fm2); G4double r1 = 0.0; G4double r2 = 0.0; if(fm1 >= 2.0) { r1 = 1.2*std::pow(fm1,0.33333333); } r2 = 1.2*std::pow(fm2,0.33333333); eta = c2*z1*z2*std::sqrt(fm/ecm); rho = c3*(r1+r2)*std::sqrt(fm*ecm); return clmb1(rho,eta,&ml); } G4double G4Incl::clmb1(G4double rho, G4double eta, G4double *ml) { const G4double dp1 = 1.0, dp2 = 2.e0, dp4 = 4.e0, dph = 0.5, dp5 = 5.0; const G4double prm1 = 69.06; const G4int ln0 = 81, lt0 = 21; const G4int ln1 = 61, lt1 = 61; static G4double psi0[ln0], trans0[lt0][ln0], x0[lt0], f0[ln0], psi1[ln1]; static G4double trans1[lt1][ln1], x1[lt1], f1[ln1]; const G4double pi = 3.14159; const G4double c0 = 0.11225, c1 = dph, gamma = 0.5772157e0, s3 = 0.2020569; const G4double s4 = 0.08232323; static G4double y = dp2*eta; static G4double psi = rho*y; static G4int i0 = 0, j0 = 0; static G4double prob = 0.0; static G4double dumm = 0.0, x = 0.0, cx = 0.0; static G4double t = 0.0, t1 = 0.0, t2 = 0.0, t3 = 0.0; static G4double f = 0.0, g = 0.0; static G4double temp = 0.0, temp1 = 0.0, temp2 = 0.0; static G4double xk = 0.0, delp0 = 0.0, delp1 = 0.0, delx0 = 0.0, delx1 = 0.0; if (rho > y) { if (psi > dp4 && psi < 50.0) { prob = clmb2(rho,eta,&dumm); } else { if(eta <= 1.0e-6) { // Safeguard against a floating point exception x = 0.0; } else { x = std::exp(std::log(eta)/6.0); } prob = std::sqrt(dp1 - y*x/(c0 + c1 * std::pow(x,3) + rho * x)); } (*ml) = 0; } else { x = rho/y; if (psi <= psi0[0]) { t = min(pi*y,prm1); cx = t/(std::exp(t) - dp1); t1 = std::cos(rho) * (dp1-0.75*std::pow(psi,2) + dp5 * x * std::pow(psi,2)) - dph * psi * rho * std::sin(rho); t2 = dp1 + dph * psi * (dp1 - x/6.0); if (eta > dp1) { t3 = std::log(psi)+dp2*gamma - dp1 + dp1/(12.e0*std::pow(eta,2))+dp1/(12.e1*std::pow(eta,4)); } else { t3 = std::log(dp2*rho) + gamma - dp1/(dp1 + std::pow(eta,2)) + s3*std::pow(eta,2) + s4*std::pow(eta,4); } g = t1 + psi*t2*t3; f = cx*rho*t2; prob = cx/(std::pow(g,2)+std::pow(f,2)); (*ml) = 3; } else if (psi <= psi0[ln0-1]) { if (x <= x0[0]) { temp = std::log(psi/psi0[0]); j0 = 1 + int(temp/delp0); j0 = min(max(j0,1),(ln0-1)); temp = temp - (j0-1)*delp0; t = f0[j0] + (f0[j0+1] - f0[j0])*temp/delp0; xk = x*std::sqrt(psi); prob = (dp1+3.33e-1*x+3.e-1*xk+1.e-1*std::pow(xk,2))*std::exp(t); t = min(pi*y,prm1); cx = t/(std::exp(t)-dp1); prob = cx/std::pow(prob,2); (*ml) = 1; } else { temp1 = std::log(x/x0[0]); i0 = min(max(1 + int(temp1/delx0),1),lt0-1); temp1 = temp1 - (i0 - 1)*delx0; temp2 = std::log(psi/psi0[0]); j0 = min(max(1+int(temp2/delp0),1),ln0-1); temp2 = temp2-(j0-1)*delp0; t1 = trans0[i0][j0] + (trans0[i0+1][j0] - trans0[i0][j0]) * temp1/delx0; t2 = trans0[i0][j0+1] + (trans0[i0+1][j0+1] - trans0[i0][j0+1]) * temp1/delx0; prob = std::exp(t1 + (t2 - t1)*temp2/delp0); (*ml)=2; } } else if (psi <= psi1[ln1-1]) { if (x <= x1[0]) { temp = std::log(psi/psi1[0]); j0 = min(max(1+int(temp/delp1), 1), ln1-1); t = f1[j0]+(f1[j0+1]-f1[j0])*(temp - (j0 - 1)*delp1)/delp1; xk = x*std::sqrt(psi); prob = (dp1+3.33e-1*x+3.0e-1*xk+1.e-1*std::pow(xk,2))*std::exp(t); t = min(pi*y,prm1); cx = t/(std::exp(t)-dp1); prob = cx/std::pow(prob,2); (*ml) = 1; } else { temp1 = std::log(x/x1[0]); i0 = min(max(1+int(temp1/delx1),1),lt1-1); temp1 = temp1-(i0-1)*delx1; temp2 = std::log(psi/psi1[0]); j0 = min(max(1+int(temp2/delp1),1),ln1-1); temp2 = temp2 - (j0-1)*delp1; t1 = trans1[i0][j0] + (trans1[i0+1][j0] - trans1[i0][j0])*temp1/delx1; t2 = trans1[i0][j0+1] + (trans1[i0+1][j0+1] - trans1[i0][j0+1])*temp1/delx1; prob = std::exp(t1 + (t2-t1)*temp2/delp1); (*ml)=2; } } else { prob = clmb2(rho,eta,&dumm); (*ml) = 4; } } return prob; } G4double G4Incl::clmb2(G4double rho, G4double eta, G4double *t1) { const G4double dp0 = 0.0, dp1 = 1.0, dp2 = 2.0, dp3 = 3.0; const G4double dph = 0.5, dpth = dp1/dp3; const G4int ln = 102; const G4double t0[ln] = {0.0, dp0,.1083,.1369,.1572,.1736,.1876,.2,.2113, 0.2216,.2312,.2403,.2489,.2571,.265,.2725,.2798, .2869,.2938,.3006,.3071,.3136,.3199,.3261,.3322, .3382,.3442,.3499,.3557,.3615,.3672,.3729,.3785, .3841,.3897,.3952,.4008,.4063,.4118,.4173,.4228, .4283,.4338,.4393,.4448,.4504,.4559,.4615,.4671, .4728,.4784,.4841,.4899,.4957,.5015,.5074,.5133, .5193,.5253,.5315,.5376,.5439,.5503,.5567,.5632, .5698,.5765,.5833,.5903,.5973,.6045,.6118,.6193, .6269,.6346,.6426,.6507,.659,.6675,.6763,.6853, .6945,.704,.7139,.724,.7345,.7453,.7566,.7683, .7805,.7932,.8065,.8205,.8352,.8508,.8673,.8849, .9038,.9243,.9467,.9715,dp1}; const G4double x1 = 0.01; const G4double xi = 100; static G4double x = 0.0, temp = 0.0, prob = 0.0; static G4int i = 0; x = dp1/(dp1 + std::sqrt(dph*rho*eta)); if (x < x1) { temp = t0[2] * std::pow((x/x1),dpth); } else { i = int(std::floor(xi*x)); i = i + 1; if(i == 101) { i = 100; } i = max(min(i,ln-1),2); // 2->1 temp = t0[i] + (t0[i+1] - t0[i]) * (x - i * x1)/x1; } (*t1) = dp1 - temp; prob = dp1 - dp2 * (*t1) * eta/rho; return (max(prob,dp0)); } // C**************************************************************************** void G4Incl::projo_spec(G4int, G4int ips, G4double, G4double, G4double) // max_a_proj is a global #define'd as a global constant { // subroutine projo_spec(ia1,ips,max_a_proj, // sn_projspec,fmpinc,pinc,tlab) // common/bl1/p1(300),p2(300),p3(300),eps(300),ind1(300),ind2(300),ta // spectators of the projectile treated here (nucleus for fermi-breakup): // ips is the number of spect, their label is in n_projspec(ips). // e,p are outside the target potential for these nucleons. // la transmission de max_a_proj=60 ne marche pas....explicite ici! // integer a_projspec,z_projspec,n_projspec(60) // real*4 m_projspec // common/proj_spect/a_projspec,z_projspec,ex_projspec,t_projspec, // s p1_projspec,p2_projspec,p3_projspec,m_projspec /// common/quatvectprojo/eps_c(60),p3_c(60), // s p1_s(60),p2_s(60),p3_s(60), // s t_c(60) // (eps_c,p1_s,p2_s,p3_s,eps_c used to store the kinematics of nucleons // for composit projectiles before entering the potential) // common/fermi/tf,pf,pf2 // G4double ttrou[21]; G4double fja = 0.0; G4double fjz = 0.0; // G4double ex2; // G4double rmmass; // const G4double um = 931.20793; // c verifs: ground state // c es=0. // c p1s=0. // c p2s=0. // c p3s=0. // c gsmass=0. // c do iloc=1,ia1 // c es=es+eps_c(iloc) // c p1s=p1s+p1_s(iloc) // c p2s=p2s+p2_s(iloc) // c p3s=p3s+p3_s(iloc) // c gsmass=gsmass+sqrt(eps_c(iloc)**2 // c s -p1_s(iloc)**2-p2_s(iloc)**2-p3_s(iloc)**2) // c enddo // c sgs=sqrt(es**2-p1s**2-p2s**2-p3s**2) // c write(6,*) 'sqs, gsmass :',sgs,gsmass // c write(6,*) 'es,p1s,p2s,p3s:',es,p1s,p2s,p3s // c end verifs // G4cout <<"proj_spect called with: " << G4endl; // G4cout <<"ips = " << ips << G4endl; ps->a_projspec=0; ps->z_projspec=0; ps->t_projspec=0.0; G4double e_spec=0.; G4double p1_spec=0.; G4double p2_spec=0.; G4double p3_spec=0.; G4double gs_mass=0.; if(ips > 1) { for(G4int i_spec=1; i_spec <= ips; i_spec++) { G4int i_c = ps->n_projspec[i_spec]; e_spec = e_spec+bl1->eps[i_c]; p1_spec = p1_spec+bl1->p1[i_c]; p2_spec = p2_spec+bl1->p2[i_c]; p3_spec = p3_spec+bl1->p3[i_c]; G4double pi_spec2= std::pow(bl1->p1[i_c],2) + std::pow(bl1->p2[i_c],2) + std::pow(bl1->p3[i_c],2); // current ground state mass: gs_mass=gs_mass+std::sqrt(std::pow(bl1->eps[i_c],2)-pi_spec2); if(bl1->ind2[i_c] == 1) ps->z_projspec=ps->z_projspec+1; } // enddo G4double p_spec2=std::pow(p1_spec,2)+std::pow(p2_spec,2)+std::pow(p3_spec,2); G4double s_spec = std::sqrt(std::pow(e_spec,2)-p_spec2); // no projectile spectator if a>=4 and a=z or a=n (no dresner breakup) if(ips >= 4 && (ps->z_projspec == ips || ps->z_projspec == 0)) { for(G4int i_spec = 1; i_spec <= ips; i_spec++) { //do i_spec=1,ips G4int i_c = ps->n_projspec[i_spec]; // single nucleon forced on shell! momentum kept. // single nucleon forced on shell! energy kept. G4double arg=(std::pow(bl1->eps[i_c],2)-std::pow(938.2796,2))/ (std::pow(bl1->p1[i_c],2)+std::pow(bl1->p2[i_c], 2)+std::pow(bl1->p3[i_c],2)); G4double coef=0.0; if(arg < 0.) { // Single nucleon is forced on shell. We have // to choose between energy and momentum // conservation... so we choose energy: coef = 1.0; bl1->eps[i_c]=std::sqrt(std::pow(bl1->p1[i_c],2) + std::pow(bl1->p2[i_c], 2) + std::pow(bl1->p3[i_c], 2) + std::pow(938.2796,2)); } else { coef=std::sqrt(arg); bl1->p1[i_c]=bl1->p1[i_c]*coef; bl1->p2[i_c]=bl1->p2[i_c]*coef; bl1->p3[i_c]=bl1->p3[i_c]*coef; } } // enddo return; } // endif // excitation energy from particle-hole excitation: // seconde methode de calcul ex4: for(G4int i = 1; i <= bl3->ia1; i++) { // do i=1,ia1 G4int nb_p=i; // call ordered(t_c(i),nb_p,tpart) ordered(qvp->t_c[i], nb_p); } // enddo G4double ex4=0.; for(G4int i = 1; i <= ips; i++) { //do i=1,ips G4int j=ps->n_projspec[i]; ex4=ex4+qvp->t_c[j]-ps->tab[i]; //ex4=ex4+qvp->t_c[j]-ps->tpart[i]; } // enddo ps->ex_projspec =ex4; // coherent rest mass: ps->m_projspec = s_spec - ps->ex_projspec; ps->a_projspec=ips; if((ps->ex_projspec < 0.) || (ps->m_projspec < 0.)) { G4cout <<"ex_projspec is negative,a,z: " << ps->ex_projspec << " " << fja << " " << fjz << G4endl; G4cout <<"...or m is negative,a,z:" << ps->m_projspec << " " << fja << " " << fjz << G4endl; } // endif ps->t_projspec = e_spec-s_spec; ps->p1_projspec = p1_spec; ps->p2_projspec = p2_spec; ps->p3_projspec = p3_spec; // c check module... // c write(6,*) 'projectile spectator a,z:',a_projspec,z_projspec // c write(6,*) 'm,t,e*:',m_projspec,t_projspec,ex_projspec // c write(6,*) 'p1,p2,p3:',p1_projspec,p2_projspec,p3_projspec // c write(6,*) ' constituants:',ips // c do i_spec=1,ips // c i_c = n_projspec(i_spec) // c write(6,*) i_c,eps(i_c),p1(i_c),p2(i_c),p3(i_c) // c enddo // c ...end check module return; } else if(ips == 1) { // then ps->a_projspec = 0; // number of nucleons in the spectator nucleus G4int i_c = ps->n_projspec[1]; //c single nucleon forced on shell! momentum kept. //c eps(i_c)=sqrt(p1(i_c)**2+p2(i_c)**2+p3(i_c)**2+938.2796**2) //c single nucleon forced on shell! energy kept. G4double arg=(std::pow(bl1->eps[i_c],2)-std::pow(938.2796,2))/ (std::pow(bl1->p1[i_c],2)+std::pow(bl1->p2[i_c],2)+std::pow(bl1->p3[i_c],2)); G4double coef=0.0; // Initialize the coefficieant if(arg < 0.) { G4cout <<"off shell problems in projo_spec, forced coef = 1.0 to recover from the error" << G4endl; coef = 1.0; } else { coef = std::sqrt(arg); } bl1->p1[i_c]=bl1->p1[i_c]*coef; bl1->p2[i_c]=bl1->p2[i_c]*coef; bl1->p3[i_c]=bl1->p3[i_c]*coef; } //endif ps->a_projspec = 0; // number of nucleons in the spectator nucleus return; } void G4Incl::ordered(G4double t, G4int nb) { // SUBROUTINE ORDERED(T,nb,TAB) //C This subroutine will ordered in TAB() from min TAB(1) to max //C TAB(nb), nb values of T sent successively. //C CALL ORDERED (T1,1), CALL ORDERED (T2,2),..CALL ORDERED (Tnb,nb) // DIMENSION TAB(1) // G4cout <<"Ordered was called" << G4endl; if(nb == 1) { ps->tab[1]=t; return; } // endif G4int i=0; ordered100: i=i+1; if(t < ps->tab[i]) { // for(G4int l = nb-1; l != i; l--) { //do l=nb-1,i,-1 for(G4int l = nb-1; l >= i; l--) { //do l=nb-1,i,-1 // G4cout <<"Ordered: L = " << l << " nb = " << nb << " i = " << i << G4endl; ps->tab[l+1]=ps->tab[l]; } // enddo ps->tab[i]=t; return; } else { if(i <= nb-1) goto ordered100; ps->tab[i]=t; return; } // endif return; } // Utilities G4double G4Incl::min(G4double a, G4double b) { if(a < b) { return a; } else { return b; } } G4int G4Incl::min(G4int a, G4int b) { if(a < b) { return a; } else { return b; } } G4double G4Incl::max(G4double a, G4double b) { if(a > b) { return a; } else { return b; } } G4int G4Incl::max(G4int a, G4int b) { if(a > b) { return a; } else { return b; } } G4int G4Incl::nint(G4double number) { G4double intpart; G4double fractpart; fractpart = std::modf(number, &intpart); if(number == 0) { return 0; } if(number > 0) { if(fractpart < 0.5) { return int(std::floor(number)); } else { return int(std::ceil(number)); } } if(number < 0) { if(fractpart < -0.5) { return int(std::floor(number)); } else { return int(std::ceil(number)); } } return 0; } G4double G4Incl::callFunction(G4int functionChoice, G4double r) { if(functionChoice == wsaxFunction) { return wsax(r); } else if(functionChoice == derivWsaxFunction) { return derivWsax(r); } else if(functionChoice == dmhoFunction) { return dmho(r); } else if(functionChoice == derivMhoFunction) { return derivMho(r); } else if(functionChoice == derivGausFunction) { return derivGaus(r); } else if(functionChoice == densFunction) { return dens(r); } return 0.0; } G4double G4Incl::am(G4double a, G4double b, G4double c, G4double d) { return std::sqrt(d*d-a*a-b*b-c*c); } G4double G4Incl::pcm(G4double E, G4double A, G4double C) { return (0.5*std::sqrt((std::pow(E,2)-std::pow((A+C),2))*(std::pow(E,2)-std::pow((A-C),2)))/E); } G4double G4Incl::sign(G4double a, G4double b) { if(b >= 0) { return utilabs(a); } if(b < 0) { return (-1.0*utilabs(a)); } if(verboseLevel > 2) { G4cout <<"Error: sign function failed. " << G4endl; } return a; // The algorithm is never supposed to reach this point. } G4double G4Incl::utilabs(G4double a) { if(a > 0) { return a; } if(a < 0) { return (-1.0*a); } if(a == 0) { return a; } if(verboseLevel > 2) { G4cout <<"Error: utilabs function failed. " << G4endl; } return a; } G4double G4Incl::amax1(G4double a, G4double b) { if(a > b) { return a; } else if(b > a) { return b; } else if(a == b) { return a; } return a; // The algorithm is never supposed to reach this point. } G4double G4Incl::w(G4double a, G4double b, G4double c, G4double d) { return (std::sqrt(a*a+b*b+c*c+d*d)); } G4int G4Incl::idnint(G4double a) { G4int value = 0; G4int valueCeil = int(std::ceil(a)); G4int valueFloor = int(std::floor(a)); if(std::abs(value - valueCeil) <= std::abs(value - valueFloor)) { return valueCeil; } else { return valueFloor; } } // Initialization helper void G4Incl::clearState() { G4int epSize = 300; for(G4int i = 0; i < epSize; ++i) { kind[i] = 0; ep[i] = 0.0; alpha[i] = 0.0; beta[i] = 0.0; gam[i] = 0.0; } inside_step = 0; } // C------------------------------------------------------------------------ // C Logging // C // C Start a new simulation step log entry // subroutine print_log_start_step() void G4Incl::print_log_start_step() { if(inside_step != 1) { G4cout << "(simulation-step " << G4endl; inside_step = 1; } else { G4cout << ";; Error: Can not start a new step inside s step" << G4endl; } } // C End a simulation step // subroutine print_log_end_step() void G4Incl::print_log_end_step() { if(inside_step == 1) { G4cout <<") ;;ENDSIMULATIONSTEP" << G4endl; inside_step = 0; } else { G4cout <<";; Error: Not inside a step" << G4endl; } } // C The main logging routine // C Parameters are used to select what to print. Possible options are: // C list of avatars, selected avatar, list of particles and // C the index of the selected avatar // subroutine print_log_entry(iavatars, iselected, iparticles, imin) void G4Incl::print_log_entry(G4int iavatars, G4int iselected, G4int iparticles, G4int imin) { // COMMON/BL1/P1(300),P2(300),P3(300),EPS(300),IND1(300),IND2(300),TA // COMMON/BL2/CROIS(19900),K,IND(20000),JND(20000) // COMMON/BL3/R1,R2,X1(300),X2(300),X3(300),IA1,IA2,RAB2 P-N22270 if(iavatars == 1) { G4cout <<";; List of avatars" << G4endl; print_avatars(); } if(iselected == 1) { G4cout <<";; Selected avatar" << G4endl; print_one_avatar(imin); // (avatar ...) ;; Selected avatar (index: imin) } if(iparticles == 1) { G4cout <<";; Particle avatar map" << G4endl; print_map(); // ((list particle-avatar-map particle-avatar-map ...)) } } // subroutine print_avatars(crois, k, ind, jnd, p1, p2, p3, eps, ind1 // s,ind2, ta, r1, r2, x1, x2, x3, ia1, ia2, rab2) void G4Incl::print_avatars() { // C COMMON/BL1/P1(350),P2(350),P3(350),EPS(350),IND1(350),IND2(350),TA // C -,V(350) P-N22260 // C COMMON/BL2/CROIS(19900),K,IND(20000),JND(20000) // C COMMON/BL3/R1,R2,X1(350),X2(350),X3(350),IA1,IA2,RAB2 P-N22270 G4cout <<"(list ;; List of avatars" << G4endl; for(int i = 1; i <= bl2->k; ++i) { //do i=1,k print_one_avatar(i); } G4cout << ")" << G4endl; } // C Prints the information of one avatar (selected using the index // C (values between 1 and K) in BL2 common block. // subroutine print_one_avatar(index) void G4Incl::print_one_avatar(G4int index) { // COMMON/BL1/P1(300),P2(300),P3(300),EPS(300),IND1(300),IND2(300),TA // COMMON/BL2/CROIS(19900),K,IND(20000),JND(20000) // COMMON/BL3/R1,R2,X1(300),X2(300),X3(300),IA1,IA2,RAB2 P-N22270 if(index < 0) { G4cout <<";; Error! index < 0! index = " << index << G4endl; return; } G4int i_ind1 = bl1->ind1[bl2->ind[index]]; // G4int i_ind2 = bl1->ind2[bl2->ind[index]]; G4int j_ind1 = -1; G4int j_ind2 = -1; if(bl2->jnd[index] != -1) { j_ind1 = bl1->ind1[bl2->jnd[index]]; j_ind2 = bl1->ind2[bl2->jnd[index]]; } else { j_ind1 = -1; j_ind2 = -1; } G4cout <<"(avatar " << bl2->crois[index] << G4endl;// Create avatar with time crois(index) // C Now we print the avatar type if(i_ind1 == 0 && j_ind2 == 0) { // NN collision G4cout <<"(quote nn-collision)" << G4endl; } else if(bl2->ind[index] != -1 && bl2->jnd[index] == -1) { G4cout <<"(quote reflection)" << G4endl; } else { G4cout <<"(quote unidentified-avatar)" << G4endl; } // C Print the list of particles in the avatar G4cout <<"(list ;; List of particles in the avatar" << G4endl; print_one_particle(bl2->ind[index]); if(bl2->jnd[index] != -1) { print_one_particle(bl2->jnd[index]); } G4cout <<") ;; End of the particle list" << G4endl; G4cout <<") ;; End of the avatar" << G4endl; } // C Prints the information of one particle in common blocks BL1 and BL3. // C The particle is selected by giving the index of the particle entry // C as a parameter. // subroutine print_one_particle(index) void G4Incl::print_one_particle(G4int index) { // COMMON/BL1/P1(300),P2(300),P3(300),EPS(300),IND1(300),IND2(300),TA // COMMON/BL2/CROIS(19900),K,IND(20000),JND(20000) // COMMON/BL3/R1,R2,X1(300),X2(300),X3(300),IA1,IA2,RAB2 P-N22270 // C Particle knows its ID, type position, momentum and energy G4cout <<"(particle " << index << G4endl; if(bl1->ind1[index] == 0) { // Nucleon if(bl1->ind2[index] == 1) { G4cout << "(quote proton)" << G4endl; } else if(bl1->ind2[index] == -1) { G4cout << "(quote neutron)" << G4endl; } else { G4cout << "(quote unidentified-nucleon-ind1-" << bl1->ind1[index] <<"-ind2-" << bl1->ind2[index] << G4endl; } } else if(bl1->ind1[index] == 1) { // Delta if(bl1->ind2[index] >= -2 && bl1->ind2[index] <= 2) { G4cout << "(quote delta-" << bl1->ind2[index] << ")" << G4endl; } else { G4cout << "(quote unidentified-delta)" << G4endl; } } else { G4cout <<"(quote unidentified-particle)" << G4endl; } print_three_vector (bl3->x1[index], bl3->x2[index], bl3->x3[index]); print_three_vector (bl1->p1[index], bl1->p2[index], bl1->p3[index]); G4cout << bl1->eps[index] << G4endl; G4cout <<")" << G4endl; // Close the particle s-expression } // subroutine print_three_vector(x, y, z) void G4Incl::print_three_vector(G4double x, G4double y, G4double z) { G4cout <<"(vector3 " << x << " " << y << " " << z << ")" << G4endl; } // subroutine print_map() void G4Incl::print_map() { // COMMON/BL1/P1(300),P2(300),P3(300),EPS(300),IND1(300),IND2(300),TA // COMMON/BL2/CROIS(19900),K,IND(20000),JND(20000) // COMMON/BL3/R1,R2,X1(300),X2(300),X3(300),IA1,IA2,RAB2 P-N22270 G4cout <<"(list ;; Particles at the beginning of the avatar" << G4endl; G4int ia = bl3->ia1 + bl3->ia2; for(G4int i = 1; i <= ia; ++i) { // do i=1,IA print_one_particle(i); } G4cout <<")" << G4endl; }