// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4InclAblaLightIonInterface.cc,v 1.16 2010/11/17 20:19:09 kaitanie Exp $ // Translation of INCL4.2/ABLA V3 // Pekka Kaitaniemi, HIP (translation) // Christelle Schmidt, IPNL (fission code) // Alain Boudard, CEA (contact person INCL/ABLA) // Aatos Heikkinen, HIP (project coordination) #include #include "G4InclAblaLightIonInterface.hh" #include "G4FermiBreakUp.hh" #include "math.h" #include "G4GenericIon.hh" #include "CLHEP/Random/Random.h" G4InclAblaLightIonInterface::G4InclAblaLightIonInterface() { hazard = new G4Hazard(); const G4long* table_entry = CLHEP::HepRandom::getTheSeeds(); // Get random seed from CLHEP. hazard->ial = (*table_entry); varntp = new G4VarNtp(); calincl = 0; ws = new G4Ws(); mat = new G4Mat(); incl = new G4Incl(hazard, calincl, ws, mat, varntp); useProjectileSpectator = true; useFermiBreakup = true; incl->setUseProjectileSpectators(useProjectileSpectator); if(!getenv("G4INCLABLANOFERMIBREAKUP")) { // Use Fermi Break-up by default if it is NOT explicitly disabled incl->setUseFermiBreakUp(true); useFermiBreakup = true; } verboseLevel = 0; if(getenv("G4INCLVERBOSE")) { verboseLevel = 1; } } G4InclAblaLightIonInterface::~G4InclAblaLightIonInterface() { delete hazard; delete varntp; delete calincl; delete ws; delete mat; delete incl; } G4HadFinalState* G4InclAblaLightIonInterface::ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& theNucleus) { // const G4bool useFermiBreakup = false; G4int maxTries = 200; G4int particleI; G4int baryonNumberBalanceInINCL = 0; G4int chargeNumberBalanceInINCL = 0; G4ParticleTable *theTableOfParticles = G4ParticleTable::GetParticleTable(); // Increase the event number: eventNumber++; // Clean up the INCL input if(calincl != 0) { delete calincl; calincl = 0; } if (verboseLevel > 1) { G4cout << " >>> G4InclAblaLightIonInterface::ApplyYourself called" << G4endl; } if(verboseLevel > 1) { G4cout <<"G4InclAblaLightIonInterface: Now processing INCL4 event number:" << eventNumber << G4endl; } // Inverse kinematics for targets with Z = 1 and A = 1 // if(false) { G4LorentzRotation toBreit = aTrack.Get4Momentum().boostVector(); if(theNucleus.GetZ_asInt() == 1 && theNucleus.GetA_asInt() == 1 && G4InclInput::canUseInverseKinematics(aTrack, theNucleus)) { G4ParticleDefinition *oldTargetDef = theTableOfParticles->GetIon(theNucleus.GetA_asInt(), theNucleus.GetZ_asInt(), 0.0); const G4ParticleDefinition *oldProjectileDef = aTrack.GetDefinition(); if(oldProjectileDef != 0 && oldTargetDef != 0) { G4int oldTargetA = oldTargetDef->GetAtomicMass(); G4int newTargetA = oldProjectileDef->GetAtomicMass(); G4int newTargetZ = oldProjectileDef->GetAtomicNumber(); if(newTargetA > 0 && newTargetZ > 0) { G4Nucleus swappedTarget(oldProjectileDef->GetAtomicMass(), oldProjectileDef->GetAtomicNumber()); // G4cout <<"Original projectile kinE = " << aTrack.GetKineticEnergy() / MeV << G4endl; // We need the same energy/nucleon. G4double projectileE = ((aTrack.GetKineticEnergy() / MeV) / newTargetA) * oldTargetA * MeV; // G4cout <<"projectileE = " << projectileE << G4endl; G4DynamicParticle swappedProjectileParticle(oldTargetDef, G4ThreeVector(0.0, 0.0, 1.0), projectileE); const G4LorentzVector swapped4Momentum = (swappedProjectileParticle.Get4Momentum()*=toBreit); swappedProjectileParticle.Set4Momentum(swapped4Momentum); const G4HadProjectile swappedProjectile(swappedProjectileParticle); // G4cout <<"New projectile kinE = " << swappedProjectile.GetKineticEnergy() / MeV << G4endl; calincl = new G4InclInput(swappedProjectile, swappedTarget, true); } else { G4cout <<"Badly defined target after swapping. Falling back to normal (non-swapped) mode." << G4endl; calincl = new G4InclInput(aTrack, theNucleus, false); } } } else { calincl = new G4InclInput(aTrack, theNucleus, false); } G4double eKin; G4double momx = 0.0, momy = 0.0, momz = 0.0; G4DynamicParticle *cascadeParticle = 0; G4ParticleDefinition *aParticleDefinition = 0; // INCL assumes the projectile particle is going in the direction of // the Z-axis. Here we construct proper rotation to convert the // momentum vectors of the outcoming particles to the original // coordinate system. G4LorentzVector projectileMomentum = aTrack.Get4Momentum(); G4LorentzRotation toZ; toZ.rotateZ(-projectileMomentum.phi()); toZ.rotateY(-projectileMomentum.theta()); G4LorentzRotation toLabFrame = toZ.inverse(); /* G4cout <<"Projectile theta = " << projectileMomentum.theta() << " phi = " << projectileMomentum.phi() << G4endl; G4cout <<"Projectile momentum " << "(px = " << projectileMomentum.px() << ", py = " << projectileMomentum.py() << ", pz = " << projectileMomentum.pz() << ")" << G4endl; G4cout << "Projectile energy = " << bulletE << " MeV" << G4endl; */ G4FermiBreakUp *fermiBreakUp = new G4FermiBreakUp(); G4FragmentVector *theSpectatorFermiBreakupResult = 0; G4FragmentVector *theFermiBreakupResult = 0; theResult.Clear(); // Make sure the output data structure is clean. std::vector result; // Temporary list for the results // Map Geant4 particle types to corresponding INCL4 types. enum bulletParticleType {nucleus = 0, proton = 1, neutron = 2, pionPlus = 3, pionZero = 4, pionMinus = 5, deuteron = 6, triton = 7, he3 = 8, he4 = 9, c12 = -12}; // Carbon beam support. G4int bulletType = calincl->bulletType(); chargeNumberBalanceInINCL = calincl->targetZ(); baryonNumberBalanceInINCL = calincl->targetA(); // G4cout <<"Type of the projectile (INCL projectile code): " << bulletType << G4endl; if(bulletType == proton) { chargeNumberBalanceInINCL += 1; baryonNumberBalanceInINCL += 1; } else if(bulletType == neutron) { baryonNumberBalanceInINCL += 1; } else if(bulletType == pionPlus) { //Note: positive pion doesn't contribute to the baryon and charge number counters chargeNumberBalanceInINCL += 1; } else if(bulletType == pionMinus) { chargeNumberBalanceInINCL -= 1; } else if(bulletType == deuteron) { chargeNumberBalanceInINCL += 1; baryonNumberBalanceInINCL += 2; } else if(bulletType == triton) { chargeNumberBalanceInINCL += 1; baryonNumberBalanceInINCL += 3; } else if(bulletType == he3) { chargeNumberBalanceInINCL += 2; baryonNumberBalanceInINCL += 3; } else if(bulletType == he4) { chargeNumberBalanceInINCL += 2; baryonNumberBalanceInINCL += 4; } if(bulletType == c12) { chargeNumberBalanceInINCL += 6; baryonNumberBalanceInINCL += 12; } if(bulletType == -666) { chargeNumberBalanceInINCL += calincl->extendedProjectileZ(); baryonNumberBalanceInINCL += calincl->extendedProjectileA(); } // Check wheter the input is acceptable. if((bulletType != 0) && ((calincl->targetA() != 1) && (calincl->targetZ() != 1))) { ws->nosurf = -2; // Nucleus surface, -2 = Woods-Saxon ws->xfoisa = 8; ws->npaulstr = 0; int nTries = 0; varntp->ntrack = 0; mat->nbmat = 1; mat->amat[0] = int(calincl->targetA()); mat->zmat[0] = int(calincl->targetA()); incl->setInput(calincl); incl->initIncl(true); while((varntp->ntrack <= 0) && (nTries < maxTries)) { // Loop until we produce real cascade nTries++; if(verboseLevel > 1) { G4cout <<"G4InclAblaLightIonInterface: Try number = " << nTries << G4endl; } incl->processEventInclAbla(calincl, eventNumber); if(verboseLevel > 1) { G4cout <<"G4InclAblaLightIonInterface: number of tracks = " << varntp->ntrack < 1) { /** * Diagnostic output */ G4cout <<"G4InclAblaLightIonInterface: Bullet type: " << calincl->bulletType() << G4endl; G4cout <<"G4Incl4AblaCascadeInterface: Bullet energy: " << calincl->bulletE() << " MeV" << G4endl; if(bulletType == -666) { G4cout <<" Extended projectile: A = " << calincl->extendedProjectileA() <<" Z = " << calincl->extendedProjectileZ() << G4endl; } G4cout <<"G4InclAblaLightIonInterface: Target A: " << calincl->targetA() << G4endl; G4cout <<"G4InclAblaLightIonInterface: Target Z: " << calincl->targetZ() << G4endl; if(verboseLevel > 3) { diagdata <<"G4InclAblaLightIonInterface: Bullet type: " << calincl->bulletType() << G4endl; diagdata <<"G4InclAblaLightIonInterface: Bullet energy: " << calincl->bulletE() << " MeV" << G4endl; diagdata <<"G4InclAblaLightIonInterface: Target A: " << calincl->targetA() << G4endl; diagdata <<"G4InclAblaLightIonInterface: Target Z: " << calincl->targetZ() << G4endl; } } // Check whether a valid cascade was produced. // If not return the original bullet particle with the same momentum. if(varntp->ntrack <= 0) { if(verboseLevel > 1) { G4cout <<"WARNING G4InclAblaLightIonInterface: No cascade. Returning original particle with original momentum." << G4endl; G4cout <<"\t Reached maximum trials of 200 to produce inelastic scattering." << G4endl; } theResult.SetStatusChange(stopAndKill); if(bulletType == proton) { aParticleDefinition = G4Proton::ProtonDefinition(); } else if(bulletType == neutron) { aParticleDefinition = G4Neutron::NeutronDefinition(); } else if(bulletType == pionPlus) { aParticleDefinition = G4PionPlus::PionPlusDefinition(); } else if(bulletType == pionZero) { aParticleDefinition = G4PionZero::PionZeroDefinition(); } else if(bulletType == pionMinus) { aParticleDefinition = G4PionMinus::PionMinusDefinition(); } else if(bulletType == deuteron) { aParticleDefinition = G4Deuteron::DeuteronDefinition(); } else if(bulletType == triton) { aParticleDefinition = G4Triton::TritonDefinition(); } else if(bulletType == he3) { aParticleDefinition = G4He3::He3Definition(); } else if(bulletType == he4) { aParticleDefinition = G4Alpha::AlphaDefinition(); } else { // Particle was not recognized. Probably an unsupported particle was given as input aParticleDefinition = 0; } if(aParticleDefinition != 0) { cascadeParticle = new G4DynamicParticle(); cascadeParticle->SetDefinition(aParticleDefinition); cascadeParticle->Set4Momentum(aTrack.Get4Momentum()); result.push_back(cascadeParticle); } } // Convert INCL4 output to Geant4 compatible data structures. // Elementary particles are converted to G4DynamicParticle. theResult.SetStatusChange(stopAndKill); for(particleI = 0; particleI <= varntp->ntrack; particleI++) { // Loop through the INCL4+ABLA output. // Get energy/momentum and construct momentum vector in INCL4 coordinates. // if(varntp->itypcasc[particleI] == -1) continue; // Avoid nucleons that are part of the spectator if(varntp->avv[particleI] == 0 && varntp->zvv[particleI] == 0) continue; momx = varntp->plab[particleI]*std::sin(varntp->tetlab[particleI]*CLHEP::pi/180.0)*std::cos(varntp->philab[particleI]*CLHEP::pi/180.0)*MeV; momy = varntp->plab[particleI]*std::sin(varntp->tetlab[particleI]*CLHEP::pi/180.0)*std::sin(varntp->philab[particleI]*CLHEP::pi/180.0)*MeV; momz = varntp->plab[particleI]*std::cos(varntp->tetlab[particleI]*CLHEP::pi/180.0)*MeV; eKin = varntp->enerj[particleI] * MeV; G4ThreeVector momDirection(momx, momy, momz); // Direction of the particle. momDirection = momDirection.unit(); if(verboseLevel > 2) { G4cout <<"G4InclAblaLightIonInterface: " << G4endl; G4cout <<"A = " << varntp->avv[particleI] << " Z = " << varntp->zvv[particleI] << G4endl; G4cout <<"eKin = " << eKin << " MeV" << G4endl; G4cout <<"px = " << momDirection.x() << " py = " << momDirection.y() <<" pz = " << momDirection.z() << G4endl; } G4int particleIdentified = 0; // Check particle ID. if((varntp->avv[particleI] == 1) && (varntp->zvv[particleI] == 1)) { // Proton cascadeParticle = new G4DynamicParticle(G4Proton::ProtonDefinition(), momDirection, eKin); particleIdentified++; baryonNumberBalanceInINCL -= 1; chargeNumberBalanceInINCL -= 1; } if((varntp->avv[particleI] == 1) && (varntp->zvv[particleI] == 0)) { // Neutron cascadeParticle = new G4DynamicParticle(G4Neutron::NeutronDefinition(), momDirection, eKin); particleIdentified++; baryonNumberBalanceInINCL -= 1; } if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == 1)) { // PionPlus cascadeParticle = new G4DynamicParticle(G4PionPlus::PionPlusDefinition(), momDirection, eKin); particleIdentified++; chargeNumberBalanceInINCL -= 1; } if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == 0)) { // PionZero cascadeParticle = new G4DynamicParticle(G4PionZero::PionZeroDefinition(), momDirection, eKin); particleIdentified++; chargeNumberBalanceInINCL -= 0; } if((varntp->avv[particleI] == -1) && (varntp->zvv[particleI] == -1)) { // PionMinus cascadeParticle = new G4DynamicParticle(G4PionMinus::PionMinusDefinition(), momDirection, eKin); particleIdentified++; chargeNumberBalanceInINCL -= -1; } if((varntp->avv[particleI] > 1) && (varntp->zvv[particleI] >= 1)) { // Nucleus fragment G4ParticleDefinition * aIonDef = 0; G4int A = G4int(varntp->avv[particleI]); G4int Z = G4int(varntp->zvv[particleI]); G4double excitationE = G4double(varntp->exini) * MeV; if(verboseLevel > 1) { G4cout <<"Finding ion: A = " << A << " Z = " << Z << " E* = " << excitationE/MeV << G4endl; } aIonDef = theTableOfParticles->GetIon(Z, A, excitationE); if(aIonDef == 0) { if(verboseLevel > 1) { G4cout <<"G4InclAblaLightIonInterface: " << G4endl; G4cout <<"FATAL ERROR: aIonDef = 0" << G4endl; G4cout <<"A = " << A << " Z = " << Z << " E* = " << excitationE << G4endl; } } if(aIonDef != 0) { // If the ion was identified add it to output. cascadeParticle = new G4DynamicParticle(aIonDef, momDirection, eKin); particleIdentified++; baryonNumberBalanceInINCL -= A; chargeNumberBalanceInINCL -= Z; } } if(particleIdentified == 1) { // Particle identified properly. cascadeParticle->Set4Momentum(cascadeParticle->Get4Momentum()*=toLabFrame); result.push_back(cascadeParticle); } else { // Particle identification failed. if(particleIdentified > 1) { // Particle was identified as more than one particle type. if(verboseLevel > 1) { G4cout <<"G4InclAblaLightIonInterface: One outcoming particle was identified as"; G4cout <<"more than one particle type. This is probably due to a bug in the interface." << G4endl; G4cout <<"Particle A:" << varntp->avv[particleI] << "Z: " << varntp->zvv[particleI] << G4endl; G4cout << "(particleIdentified =" << particleIdentified << ")" << G4endl; } } } } // Spectator nucleus Fermi break-up if(useFermiBreakup && useProjectileSpectator && varntp->masp > 1) { baryonNumberBalanceInINCL -= G4int(varntp->masp); G4double nuclearMass = G4NucleiProperties::GetNuclearMass(G4int(varntp->masp), G4int(varntp->mzsp)) + varntp->exsp * MeV; // Use momentum scaling to compensate for different masses in G4 and INCL: G4double momentumScaling = G4InclUtils::calculate4MomentumScaling(G4int(varntp->masp), G4int(varntp->mzsp), varntp->exsp, varntp->spectatorT, varntp->spectatorP1, varntp->spectatorP2, varntp->spectatorP3); G4LorentzVector p4(momentumScaling * varntp->spectatorP1 * MeV, momentumScaling * varntp->spectatorP2 * MeV, momentumScaling * varntp->spectatorP3 * MeV, varntp->spectatorT * MeV + nuclearMass); // Four-momentum, baryon number and charge balance: G4LorentzVector fourMomentumBalance = p4; G4int baryonNumberBalance = G4int(varntp->masp); chargeNumberBalanceInINCL -= G4int(varntp->mzsp); G4int chargeBalance = G4int(varntp->mzsp); G4LorentzRotation toFragmentZ; // Assume that Fermi breakup uses Z as the direction of the projectile toFragmentZ.rotateZ(-p4.theta()); toFragmentZ.rotateY(-p4.phi()); G4LorentzRotation toFragmentLab = toFragmentZ.inverse(); // p4 *= toFragmentZ; G4LorentzVector p4rest = p4; // p4rest.boost(-p4.boostVector()); if(verboseLevel > 0) { G4cout <<"Spectator nucleus:" << G4endl; G4cout <<"p4: " << G4endl; G4cout <<" px: " << p4.px() <<" py: " << p4.py() <<" pz: " << p4.pz() << G4endl; G4cout <<" E = " << p4.e() << G4endl; G4cout <<"p4rest: " << G4endl; G4cout <<" px: " << p4rest.px() <<" py: " << p4rest.py() <<" pz: " << p4rest.pz() << G4endl; G4cout <<" E = " << p4rest.e() << G4endl; } G4Fragment theSpectatorNucleus(G4int(varntp->masp), G4int(varntp->mzsp), p4rest); theSpectatorFermiBreakupResult = fermiBreakUp->BreakItUp(theSpectatorNucleus); if(theSpectatorFermiBreakupResult != 0) { G4FragmentVector::iterator fragment; for(fragment = theSpectatorFermiBreakupResult->begin(); fragment != theSpectatorFermiBreakupResult->end(); fragment++) { G4ParticleDefinition *theFragmentDefinition = 0; if((*fragment)->GetA_asInt() == 1 && (*fragment)->GetZ_asInt() == 0) { // Neutron theFragmentDefinition = G4Neutron::NeutronDefinition(); } else if ((*fragment)->GetA_asInt() == 1 && (*fragment)->GetZ_asInt() == 1) { theFragmentDefinition = G4Proton::ProtonDefinition(); } else { theFragmentDefinition = theTableOfParticles->GetIon((*fragment)->GetZ_asInt(), (*fragment)->GetA_asInt(), (*fragment)->GetExcitationEnergy()); } if(theFragmentDefinition != 0) { G4DynamicParticle *theFragment = new G4DynamicParticle(theFragmentDefinition, (*fragment)->GetMomentum()); G4LorentzVector labMomentum = theFragment->Get4Momentum(); // labMomentum.boost(p4.boostVector()); // labMomentum *= toFragmentLab; // labMomentum *= toLabFrame; theFragment->Set4Momentum(labMomentum); fourMomentumBalance -= theFragment->Get4Momentum(); baryonNumberBalance -= theFragmentDefinition->GetAtomicMass(); chargeBalance -= theFragmentDefinition->GetAtomicNumber(); if(verboseLevel > 0) { G4cout <<"Resulting fragment: " << G4endl; G4cout <<" kinetic energy = " << theFragment->GetKineticEnergy() / MeV << " MeV" << G4endl; G4cout <<" momentum = " << theFragment->GetMomentum().mag() / MeV << " MeV" << G4endl; } result.push_back(theFragment); } else { G4cout <<"G4InclAblaCascadeInterface: Error. Fragment produced by Fermi break-up does not exist." << G4endl; G4cout <<"Resulting fragment: " << G4endl; G4cout <<" Z = " << (*fragment)->GetZ_asInt() << G4endl; G4cout <<" A = " << (*fragment)->GetA_asInt() << G4endl; G4cout <<" Excitation : " << (*fragment)->GetExcitationEnergy() / MeV << " MeV" << G4endl; G4cout <<" momentum = " << (*fragment)->GetMomentum().mag() / MeV << " MeV" << G4endl; } } delete theSpectatorFermiBreakupResult; theSpectatorFermiBreakupResult = 0; if(std::abs(fourMomentumBalance.mag() / MeV) > 0.1 * MeV) { G4cout <<"Four-momentum balance after spectator nucleus Fermi break-up:" << G4endl; G4cout <<"Magnitude: " << fourMomentumBalance.mag() / MeV << " MeV" << G4endl; G4cout <<"Vector components (px, py, pz, E) = (" << fourMomentumBalance.px() << ", " << fourMomentumBalance.py() << ", " << fourMomentumBalance.pz() << ", " << fourMomentumBalance.e() << ")" << G4endl; } if(baryonNumberBalance != 0) { G4cout <<"Event " << eventNumber << ": Baryon number balance after spectator nucleus Fermi break-up: " << baryonNumberBalance << G4endl; } if(chargeBalance != 0) { G4cout <<"Event " << eventNumber <<": Charge balance after spectator nucleus Fermi break-up: " << chargeBalance << G4endl; } } } // Finally do Fermi break-up if needed if(varntp->needsFermiBreakup && varntp->massini > 0) { baryonNumberBalanceInINCL -= G4int(varntp->massini); chargeNumberBalanceInINCL -= G4int(varntp->mzini); // Call Fermi Break-up G4double nuclearMass = G4NucleiProperties::GetNuclearMass(G4int(varntp->massini), G4int(varntp->mzini)) + varntp->exini * MeV; G4LorentzVector fragmentMomentum(varntp->pxrem * MeV, varntp->pyrem * MeV, varntp->pzrem * MeV, varntp->erecrem * MeV + nuclearMass); G4double momentumScaling = G4InclUtils::calculate4MomentumScaling(G4int(varntp->massini), G4int(varntp->mzini), varntp->exini, varntp->erecrem, varntp->pxrem, varntp->pyrem, varntp->pzrem); G4LorentzVector p4(momentumScaling * varntp->pxrem * MeV, momentumScaling * varntp->pyrem * MeV, momentumScaling * varntp->pzrem * MeV, varntp->erecrem + nuclearMass); // For four-momentum, baryon number and charge conservation check: G4LorentzVector fourMomentumBalance = p4; G4int baryonNumberBalance = G4int(varntp->massini); G4int chargeBalance = G4int(varntp->mzini); G4LorentzRotation toFragmentZ; toFragmentZ.rotateZ(-p4.theta()); toFragmentZ.rotateY(-p4.phi()); G4LorentzRotation toFragmentLab = toFragmentZ.inverse(); // p4 *= toFragmentZ; G4LorentzVector p4rest = p4; // p4rest.boost(-p4.boostVector()); if(verboseLevel > 0) { G4cout <<"Cascade remnant nucleus:" << G4endl; G4cout <<"p4: " << G4endl; G4cout <<" px: " << p4.px() <<" py: " << p4.py() <<" pz: " << p4.pz() << G4endl; G4cout <<" E = " << p4.e() << G4endl; G4cout <<"p4rest: " << G4endl; G4cout <<" px: " << p4rest.px() <<" py: " << p4rest.py() <<" pz: " << p4rest.pz() << G4endl; G4cout <<" E = " << p4rest.e() << G4endl; } G4Fragment theCascadeRemnant(G4int(varntp->massini), G4int(varntp->mzini), p4rest); theFermiBreakupResult = fermiBreakUp->BreakItUp(theCascadeRemnant); if(theFermiBreakupResult != 0) { G4FragmentVector::iterator fragment; for(fragment = theFermiBreakupResult->begin(); fragment != theFermiBreakupResult->end(); fragment++) { G4ParticleDefinition *theFragmentDefinition = 0; if((*fragment)->GetA_asInt() == 1 && (*fragment)->GetZ_asInt() == 0) { // Neutron theFragmentDefinition = G4Neutron::NeutronDefinition(); } else if ((*fragment)->GetA_asInt() == 1 && (*fragment)->GetZ_asInt() == 1) { theFragmentDefinition = G4Proton::ProtonDefinition(); } else { theFragmentDefinition = theTableOfParticles->GetIon((*fragment)->GetZ_asInt(), (*fragment)->GetA_asInt(), (*fragment)->GetExcitationEnergy()); } if(theFragmentDefinition != 0) { G4DynamicParticle *theFragment = new G4DynamicParticle(theFragmentDefinition, (*fragment)->GetMomentum()); G4LorentzVector labMomentum = theFragment->Get4Momentum(); // labMomentum.boost(p4.boostVector()); // labMomentum *= toFragmentLab; // labMomentum *= toLabFrame; theFragment->Set4Momentum(labMomentum); fourMomentumBalance -= theFragment->Get4Momentum(); baryonNumberBalance -= theFragmentDefinition->GetAtomicMass(); chargeBalance -= theFragmentDefinition->GetAtomicNumber(); if(verboseLevel > 0) { G4cout <<"Resulting fragment: " << G4endl; G4cout <<" kinetic energy = " << theFragment->GetKineticEnergy() / MeV << " MeV" << G4endl; G4cout <<" momentum = " << theFragment->GetMomentum().mag() / MeV << " MeV" << G4endl; } result.push_back(theFragment); } else { G4cout <<"G4InclAblaCascadeInterface: Error. Fragment produced by Fermi break-up does not exist." << G4endl; G4cout <<"Resulting fragment: " << G4endl; G4cout <<" Z = " << (*fragment)->GetZ_asInt() << G4endl; G4cout <<" A = " << (*fragment)->GetA_asInt() << G4endl; G4cout <<" Excitation : " << (*fragment)->GetExcitationEnergy() / MeV << " MeV" << G4endl; G4cout <<" momentum = " << (*fragment)->GetMomentum().mag() / MeV << " MeV" << G4endl; } } delete theFermiBreakupResult; theFermiBreakupResult = 0; if(std::abs(fourMomentumBalance.mag() / MeV) > 0.1 * MeV) { G4cout <<"Four-momentum balance after remnant nucleus Fermi break-up:" << G4endl; G4cout <<"Magnitude: " << fourMomentumBalance.mag() / MeV << " MeV" << G4endl; G4cout <<"Vector components (px, py, pz, E) = (" << fourMomentumBalance.px() << ", " << fourMomentumBalance.py() << ", " << fourMomentumBalance.pz() << ", " << fourMomentumBalance.e() << ")" << G4endl; } if(baryonNumberBalance != 0) { G4cout <<"Baryon number balance after remnant nucleus Fermi break-up: " << baryonNumberBalance << G4endl; } if(chargeBalance != 0) { G4cout <<"Charge balance after remnant nucleus Fermi break-up: " << chargeBalance << G4endl; } } } varntp->ntrack = 0; // Clean up the number of generated particles in the event. if(baryonNumberBalanceInINCL != 0 && verboseLevel > 1) { G4cout <<"Event " << eventNumber <<": G4InclAblaLightIonInterface: Baryon number conservation problem in INCL detected!" << G4endl; G4cout <<"Baryon number balance: " << baryonNumberBalanceInINCL << G4endl; if(baryonNumberBalanceInINCL < 0) { G4cout <<"Event " << eventNumber <<": Too many outcoming baryons!" << G4endl; } else if(baryonNumberBalanceInINCL > 0) { G4cout <<"Event " << eventNumber <<": Too few outcoming baryons!" << G4endl; } } if(chargeNumberBalanceInINCL != 0 && verboseLevel > 1) { G4cout <<"Event " << eventNumber <<": G4InclAblaLightIonInterface: Charge number conservation problem in INCL detected!" << G4endl; G4cout <<"Event " << eventNumber <<": Charge number balance: " << chargeNumberBalanceInINCL << G4endl; } } /** * Report unsupported features. * (Check bullet, target, energy range) */ else { // If the bullet type was not recognized by the interface, it will be returned back without any interaction. theResult.SetStatusChange(stopAndKill); G4ParticleTable *theTableOfParticles = G4ParticleTable::GetParticleTable(); cascadeParticle = new G4DynamicParticle(theTableOfParticles->FindParticle(aTrack.GetDefinition()), aTrack.Get4Momentum()); result.push_back(cascadeParticle); if(verboseLevel > 1) { G4cout <<"G4InclAblaLightIonInterface: Error processing event number (internal) " << eventNumber << G4endl; } if(verboseLevel > 3) { diagdata <<"G4InclAblaLightIonInterface: Error processing event number (internal) " << eventNumber << G4endl; } if(bulletType == 0) { if(verboseLevel > 1) { G4cout <<"G4InclAblaLightIonInterface: Unknown bullet type" << G4endl; G4cout <<"Bullet particle name: " << cascadeParticle->GetDefinition()->GetParticleName() << G4endl; } if(verboseLevel > 3) { diagdata <<"G4InclAblaLightIonInterface: Unknown bullet type" << G4endl; diagdata <<"Bullet particle name: " << cascadeParticle->GetDefinition()->GetParticleName() << G4endl; } } if((calincl->targetA() == 1) && (calincl->targetZ() == 1)) { // Unsupported target if(verboseLevel > 1) { G4cout <<"Unsupported target: " << G4endl; G4cout <<"Target A: " << calincl->targetA() << G4endl; G4cout <<"TargetZ: " << calincl->targetZ() << G4endl; } if(verboseLevel > 3) { diagdata <<"Unsupported target: " << G4endl; diagdata <<"Target A: " << calincl->targetA() << G4endl; diagdata <<"TargetZ: " << calincl->targetZ() << G4endl; } } if(calincl->bulletE() < 100) { // INCL does not support E < 100 MeV. if(verboseLevel > 1) { G4cout <<"Unsupported bullet energy: " << calincl->bulletE() << " MeV. (Lower limit is 100 MeV)." << G4endl; G4cout <<"WARNING: Returning the original bullet with original energy back to Geant4." << G4endl; } if(verboseLevel > 3) { diagdata <<"Unsupported bullet energy: " << calincl->bulletE() << " MeV. (Lower limit is 100 MeV)." << G4endl; } } if(verboseLevel > 3) { diagdata <<"WARNING: returning the original bullet with original energy back to Geant4." << G4endl; } } // Finally copy the accumulated secondaries into the result collection: G4ThreeVector boostVector = aTrack.Get4Momentum().boostVector(); G4LorentzRotation boostBack = toBreit.inverse(); for(std::vector::iterator i = result.begin(); i != result.end(); ++i) { // If the calculation was performed in inverse kinematics we have to // convert the result back... if(calincl->isInverseKinematics()) { G4LorentzVector mom = (*i)->Get4Momentum(); mom.setPz(-1.0 * mom.pz()); // Reverse the z-component of the momentum vector mom *= boostBack; (*i)->Set4Momentum(mom); } theResult.AddSecondary((*i)); } delete fermiBreakUp; delete calincl; calincl = 0; return &theResult; } G4ReactionProductVector* G4InclAblaLightIonInterface::Propagate(G4KineticTrackVector* , G4V3DNucleus* ) { return 0; }