// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // //080721 Create adjust_final_state method by T. Koi //080801 Residual reconstruction with theNDLDataA,Z (A, Z, and momentum are adjusted) by T. Koi //101110 Set lower limit for gamma energy(1keV) by T. Koi #include "G4NeutronHPFinalState.hh" #include "G4ParticleTable.hh" #include "G4Gamma.hh" void G4NeutronHPFinalState::adjust_final_state ( G4LorentzVector init_4p_lab ) { G4double minimum_energy = 1*keV; if ( adjustResult != true ) return; G4int nSecondaries = theResult.GetNumberOfSecondaries(); G4int sum_Z = 0; G4int sum_A = 0; G4int max_SecZ = 0; G4int max_SecA = 0; for ( int i = 0 ; i < nSecondaries ; i++ ) { sum_Z += theResult.GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicNumber(); max_SecZ = std::max ( max_SecZ , theResult.GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicNumber() ); sum_A += theResult.GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicMass(); max_SecA = std::max ( max_SecA , theResult.GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicMass() ); } G4ParticleDefinition* resi_pd = NULL; if ( (int)(theBaseZ - sum_Z) == 0 && (int)(theBaseA + 1 - sum_A) == 0 ) resi_pd = G4ParticleTable::GetParticleTable()->GetIon ( max_SecZ , max_SecA , 0.0 ); else { resi_pd = G4ParticleTable::GetParticleTable()->GetIon ( int(theBaseZ - sum_Z) , (int)(theBaseA + 1 - sum_A) , 0.0 ); if ( resi_pd == NULL ) { // theNDLDataZ,A has the Z and A of used NDL file if ( (int)(theNDLDataZ - sum_Z) == 0 && (int)(theNDLDataA + 1 - sum_A) == 0 ) { G4int dif_Z = ( int ) ( theNDLDataZ - theBaseZ ); G4int dif_A = ( int ) ( theNDLDataA - theBaseA ); resi_pd = G4ParticleTable::GetParticleTable()->GetIon ( max_SecZ - dif_Z , max_SecA - dif_A , 0.0 ); for ( int i = 0 ; i < nSecondaries ; i++ ) { if ( theResult.GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicNumber() == max_SecZ && theResult.GetSecondary( i )->GetParticle()->GetDefinition()->GetAtomicMass() == max_SecA ) { G4ThreeVector p = theResult.GetSecondary( i )->GetParticle()->GetMomentum(); p = p * resi_pd->GetPDGMass()/ G4ParticleTable::GetParticleTable()->GetIon ( max_SecZ , max_SecA , 0.0 )->GetPDGMass(); theResult.GetSecondary( i )->GetParticle()->SetDefinition( resi_pd ); theResult.GetSecondary( i )->GetParticle()->SetMomentum( p ); } } } } } G4LorentzVector secs_4p_lab( 0.0 ); G4int n_sec = theResult.GetNumberOfSecondaries(); G4double fast = 0; G4double slow = 1; G4int ifast = 0; G4int islow = 0; G4int ires = -1; for ( G4int i = 0 ; i < n_sec ; i++ ) { //G4cout << "HP_DB " << i // << " " << theResult.GetSecondary( i )->GetParticle()->GetDefinition()->GetParticleName() // << " 4p " << theResult.GetSecondary( i )->GetParticle()->Get4Momentum() // << " ke " << theResult.GetSecondary( i )->GetParticle()->Get4Momentum().e() - theResult.GetSecondary( i )->GetParticle()->GetDefinition()->GetPDGMass() // << G4endl; secs_4p_lab += theResult.GetSecondary( i )->GetParticle()->Get4Momentum(); G4double beta = 0; if ( theResult.GetSecondary( i )->GetParticle()->GetDefinition() != G4Gamma::Gamma() ) { beta = theResult.GetSecondary( i )->GetParticle()->Get4Momentum().beta(); } else { beta = 1; } if ( theResult.GetSecondary( i )->GetParticle()->GetDefinition() == resi_pd ) ires = i; if ( slow > beta && beta != 0 ) { slow = beta; islow = i; } if ( fast <= beta ) { if ( fast != 1 ) { fast = beta; ifast = i; } else { // fast is already photon then check E G4double e = theResult.GetSecondary( i )->GetParticle()->Get4Momentum().e(); if ( e > theResult.GetSecondary( ifast )->GetParticle()->Get4Momentum().e() ) { // among photons, the highest E becomes the fastest ifast = i; } } } } G4LorentzVector dif_4p = init_4p_lab - secs_4p_lab; //G4cout << "HP_DB dif_4p " << init_4p_lab - secs_4p_lab << G4endl; //G4cout << "HP_DB dif_3p mag " << ( dif_4p.v() ).mag() << G4endl; //G4cout << "HP_DB dif_e " << dif_4p.e() - ( dif_4p.v() ).mag()<< G4endl; G4LorentzVector p4(0); if ( ires == -1 ) { // Create and Add Residual Nucleus ires = nSecondaries; nSecondaries += 1; G4DynamicParticle* res = new G4DynamicParticle ( resi_pd , dif_4p.v() ); theResult.AddSecondary ( res ); p4 = res->Get4Momentum(); if ( slow > p4.beta() ) { slow = p4.beta(); islow = ires; } dif_4p = init_4p_lab - ( secs_4p_lab + p4 ); } //Which is bigger dif_p or dif_e if ( dif_4p.v().mag() < std::abs( dif_4p.e() ) ) { // Adjust p //if ( dif_4p.v().mag() < 1*MeV ) if ( minimum_energy < dif_4p.v().mag() && dif_4p.v().mag() < 1*MeV ) { nSecondaries += 1; theResult.AddSecondary ( new G4DynamicParticle ( G4Gamma::Gamma() , dif_4p.v() ) ); } else { //G4cout << "HP_DB Difference in dif_p is too large (>1MeV) or too small(<1keV) to adjust, so that give up tuning" << G4endl; } } else { // dif_p > dif_e // at first momentum // Move residual momentum p4 = theResult.GetSecondary( ires )->GetParticle()->Get4Momentum(); theResult.GetSecondary( ires )->GetParticle()->SetMomentum( p4.v() + dif_4p.v() ); dif_4p = init_4p_lab - ( secs_4p_lab - p4 + theResult.GetSecondary( ires )->GetParticle()->Get4Momentum() ); //G4cout << "HP_DB new residual kinetic energy " << theResult.GetSecondary( ires )->GetParticle()->GetKineticEnergy() << G4endl; } G4double dif_e = dif_4p.e() - ( dif_4p.v() ).mag(); //G4cout << "HP_DB dif_e " << dif_e << G4endl; if ( dif_e > 0 ) { // create 2 gamma nSecondaries += 2; G4double e1 = ( dif_4p.e() -dif_4p.v().mag() ) / 2; if ( minimum_energy < e1 ) { G4double costh = 2.*G4UniformRand()-1.; G4double phi = twopi*G4UniformRand(); G4ThreeVector dir( std::sin(std::acos(costh))*std::cos(phi), std::sin(std::acos(costh))*std::sin(phi), costh); theResult.AddSecondary ( new G4DynamicParticle ( G4Gamma::Gamma() , e1*dir ) ); theResult.AddSecondary ( new G4DynamicParticle ( G4Gamma::Gamma() , -e1*dir ) ); } else { //G4cout << "HP_DB Difference is too small(<1keV) to adjust, so that neglect it" << G4endl; } } else //dif_e < 0 { // At first reduce KE of the fastest secondary; G4double ke0 = theResult.GetSecondary( ifast )->GetParticle()->GetKineticEnergy(); G4ThreeVector p0 = theResult.GetSecondary( ifast )->GetParticle()->GetMomentum(); G4ThreeVector dir = ( theResult.GetSecondary( ifast )->GetParticle()->GetMomentum() ).unit(); //G4cout << "HP_DB ifast " << ifast << " ke0 " << ke0 << G4endl; if ( ke0 + dif_e > 0 ) { theResult.GetSecondary( ifast )->GetParticle()->SetKineticEnergy( ke0 + dif_e ); G4ThreeVector dp = p0 - theResult.GetSecondary( ifast )->GetParticle()->GetMomentum(); G4ThreeVector p = theResult.GetSecondary( islow )->GetParticle()->GetMomentum(); //theResult.GetSecondary( islow )->GetParticle()->SetMomentum( p - dif_e*dir ); theResult.GetSecondary( islow )->GetParticle()->SetMomentum( p + dp ); } else { //G4cout << "HP_DB Difference in dif_e too large ( <0MeV ) to adjust, so that give up tuning" << G4endl; } } }