// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // neutron_hp -- source file // J.P. Wellisch, Nov-1996 // A prototype of the low energy neutron transport model. // // 070618 fix memory leaking by T. Koi // 071002 enable cross section dump by T. Koi // 081024 G4NucleiPropertiesTable:: to G4NucleiProperties:: // 081124 Protect invalid read which caused run time errors by T. Koi // 100729 Add safty for 0 lenght cross sections by T. Koi #include "G4NeutronHPFissionData.hh" #include "G4Neutron.hh" #include "G4ElementTable.hh" #include "G4NeutronHPData.hh" G4bool G4NeutronHPFissionData::IsApplicable(const G4DynamicParticle*aP, const G4Element*) { G4bool result = true; G4double eKin = aP->GetKineticEnergy(); if(eKin>20*MeV||aP->GetDefinition()!=G4Neutron::Neutron()) result = false; return result; } G4NeutronHPFissionData::G4NeutronHPFissionData() { theCrossSections = 0; BuildPhysicsTable(*G4Neutron::Neutron()); } G4NeutronHPFissionData::~G4NeutronHPFissionData() { // TKDB if ( theCrossSections != NULL ) { theCrossSections->clearAndDestroy(); delete theCrossSections; } } void G4NeutronHPFissionData::BuildPhysicsTable(const G4ParticleDefinition& aP) { if(&aP!=G4Neutron::Neutron()) throw G4HadronicException(__FILE__, __LINE__, "Attempt to use NeutronHP data for particles other than neutrons!!!"); size_t numberOfElements = G4Element::GetNumberOfElements(); //theCrossSections = new G4PhysicsTable( numberOfElements ); // TKDB if ( theCrossSections == NULL ) theCrossSections = new G4PhysicsTable( numberOfElements ); // make a PhysicsVector for each element static const G4ElementTable *theElementTable = G4Element::GetElementTable(); for( size_t i=0; iMakePhysicsVector((*theElementTable)[i], this); theCrossSections->push_back(physVec); } } void G4NeutronHPFissionData::DumpPhysicsTable(const G4ParticleDefinition& aP) { if(&aP!=G4Neutron::Neutron()) throw G4HadronicException(__FILE__, __LINE__, "Attempt to use NeutronHP data for particles other than neutrons!!!"); // // Dump element based cross section // range 10e-5 eV to 20 MeV // 10 point per decade // in barn // G4cout << G4endl; G4cout << G4endl; G4cout << "Fission Cross Section of Neutron HP"<< G4endl; G4cout << "(Pointwise cross-section at 0 Kelvin.)" << G4endl; G4cout << G4endl; G4cout << "Name of Element" << G4endl; G4cout << "Energy[eV] XS[barn]" << G4endl; G4cout << G4endl; size_t numberOfElements = G4Element::GetNumberOfElements(); static const G4ElementTable *theElementTable = G4Element::GetElementTable(); for ( size_t i = 0 ; i < numberOfElements ; ++i ) { G4cout << (*theElementTable)[i]->GetName() << G4endl; if ( (*((*theCrossSections)(i))).GetVectorLength() == 0 ) { G4cout << "The cross-section data of the fission of this element is not available." << G4endl; G4cout << G4endl; continue; } G4int ie = 0; for ( ie = 0 ; ie < 130 ; ie++ ) { G4double eKinetic = 1.0e-5 * std::pow ( 10.0 , ie/10.0 ) *eV; G4bool outOfRange = false; if ( eKinetic < 20*MeV ) { G4cout << eKinetic/eV << " " << (*((*theCrossSections)(i))).GetValue(eKinetic, outOfRange)/barn << G4endl; } } G4cout << G4endl; } //G4cout << "G4NeutronHPFissionData::DumpPhysicsTable still to be implemented"<GetZ()<90) return result; G4bool outOfRange; G4int index = anE->GetIndex(); // 100729 TK add safety if ( ( ( *theCrossSections )( index ) )->GetVectorLength() == 0 ) return result; // prepare neutron G4double eKinetic = aP->GetKineticEnergy(); G4ReactionProduct theNeutron( aP->GetDefinition() ); theNeutron.SetMomentum( aP->GetMomentum() ); theNeutron.SetKineticEnergy( eKinetic ); // prepare thermal nucleus G4Nucleus aNuc; G4double eps = 0.0001; G4double theA = anE->GetN(); G4double theZ = anE->GetZ(); G4double eleMass; eleMass = ( G4NucleiProperties::GetNuclearMass( static_cast(theA+eps) , static_cast(theZ+eps) ) ) / G4Neutron::Neutron()->GetPDGMass(); G4ReactionProduct boosted; G4double aXsection; // MC integration loop G4int counter = 0; G4double buffer = 0; G4int size = G4int(std::max(10., aT/60*kelvin)); G4ThreeVector neutronVelocity = 1./G4Neutron::Neutron()->GetPDGMass()*theNeutron.GetMomentum(); G4double neutronVMag = neutronVelocity.mag(); while(counter == 0 || std::abs(buffer-result/std::max(1,counter)) > 0.01*buffer) { if(counter) buffer = result/counter; while (counter